Problem C. Dirichlet k-th root

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Mathematician Pang learned Dirichlet convolution during the previous camp. However, compared with deep reinforcement learning, it's too easy for him. Therefore, he did something special.
If $f, g:\{1,2, \ldots, n\} \rightarrow \mathbb{Z}$ are two functions from the positive integers to the integers, the Dirichlet convolution $f * g$ is a new function defined by:

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

We define the k-th power of an function $g=f^{k}$ by

$$
f^{k}=\underbrace{f * \cdots * f}_{k \text { times }} \text {. }
$$

In this problem, we want to solve the inverse problem: Given g and k, you need to find a function f such that $g=f^{k}$.
Moreover, there is an additional constraint that $f(1)$ and $g(1)$ must equal to 1 . And all the arithmetic operations are done on \mathbb{F}_{p} where $p=998244353$, which means that in the Dirichlet convolution, $(f * g)(n)=\left(\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)\right) \bmod p$.

Input

The first line contains two integers n and $k\left(2 \leq n \leq 10^{5}, 1 \leq k<998244353\right)$.
The second line contains n integers $g(1), g(2), \ldots, g(n)(0 \leq g(i)<998244353, g(1)=1)$.

Output

If there is no solution, output -1 .
Otherwise, output $f(1), f(2), \ldots, f(n)(0 \leq f(i)<998244353, f(1)=1)$. If there are multiple solutions, print anyone.

Example

standard input	standard output
52	14253
184266	

