Problem E. Flow

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 mebibytes

One of Pang's research interests is the maximum flow problem.
A directed graph G with n vertices is universe if the following condition is satisfied:

- G is the union of k vertex-independent simple paths from vertex 1 to vertex n of the same length.

A set of paths is vertex-independent if they do not have any internal vertex in common.
A vertex in a path is called internal if it is not an endpoint of that path.
A path is simple if its vertices are distinct.
Let G be a universe graph with n vertices and m edges. Each edge has a non-negative integral capacity. You are allowed to perform the following operation any (including 0) times to make the maximum flow from vertex 1 to vertex n as large as possible:

Let e be an edge with positive capacity. Reduce the capacity of e by 1 and increase the capacity of another edge by 1 .

Pang wants to know what is the minimum number of operations to achieve it?

Input

The first line contains two integers n and $m(2 \leq n \leq 100000,1 \leq m \leq 200000)$.
Each of the next m lines contains three integers x, y and z, denoting an edge from x to y with capacity $z(1 \leq x, y \leq n, 0 \leq z \leq 1000000000)$.
It's guaranteed that the input is a universe graph without multiple edges and self-loops.

Output

Output a single integer - the minimum number of operations.

Examples

		standard input		standard output
4	3		1	
1	2	1		
2	3	2		1
3	4	3		
4	4			
1	2	1		
1	3	1		
2	4	2		
3	4	2		

