Problem H. King

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds 256 mebibytes

As we all know, the number of Pang's papers follows exponential growth. Therefore, we are curious about King sequence.
You are given a prime p. A sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a King sequence if and only if there is an integer $1 \leq q<p$ such that for all integers $i \in[2, n], q a_{i-1} \equiv a_{i}(\bmod p)$.
Given a sequence $B=\left(b_{1}, \ldots, b_{m}\right)$, what is the length of the longest King subsequence of B ?
A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.
Pang is super busy recently, so the only thing he wants to know is whether the answer is greater than or equal to $\frac{n}{2}$.
If the length of the longest King sequence is less than $\frac{n}{2}$, output -1 . Otherwise, output the length of the longest King subsequence.

Input

The first line contains an integer T denoting the number of test cases ($1 \leq T \leq 1000$).
The first line in a test case contains two integers n and $p(2 \leq n \leq 200000,2 \leq p \leq 1000000007, p$ is a prime). The sum of n over all test cases does not exceed 200000 .
The second line in a test case contains a sequence $b_{1}, \ldots, b_{n}\left(1 \leq b_{i}<p\right)$.

Output

For each test case, output one line containing the answer which is -1 or the length of the longest King subsequence.

Example

