Problem I. Moon

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 256 mebibytes

Let S be a sphere with radius 1 and center $(0,0,0)$. Let $a_{0}, a_{1}, \ldots, a_{n}$ be $n+1$ points on the surface of S. The positions of a_{1}, \ldots, a_{n} are fixed while the position of a_{0} is a uniform random point on the surface of S. Let f be 1 if there exists a hemisphere of S that contains a_{0}, \ldots, a_{n} and 0 otherwise. Calculate the expected value of f.

Input

The first line contains an integer n denoting the number of points $(0 \leq n \leq 100000)$.
The i-th line of the next n lines contains three integers x, y, z denoting the point $a_{i}=\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)\left(-1000000 \leq x, y, z \leq 1000000, x^{2}+y^{2}+z^{2} \neq 0\right)$.
It is guaranteed that a_{1}, \ldots, a_{n} are distinct.

Output

Output the answer.
The answer will be considered correct if its absolute or relative error doesn't exceed 10^{-6}.

Example

	standard input	standard output	
3			0.875000000000
1	0	0	
0	1	0	
0	0	1	

