Problem I. Moon

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

Let S be a sphere with radius 1 and center (0, 0, 0). Let a_0, a_1, \ldots, a_n be n + 1 points on the surface of S. The positions of a_1, \ldots, a_n are fixed while the position of a_0 is a uniform random point on the surface of S. Let f be 1 if there exists a hemisphere of S that contains a_0, \ldots, a_n and 0 otherwise. Calculate the expected value of f.

Input

The first line contains an integer n denoting the number of points $(0 \le n \le 100000)$.

The *i*-th line of the next *n* lines contains three integers x, y, z denoting the point $a_i = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$ (-1000000 $\leq x, y, z \leq 1000000, x^2 + y^2 + z^2 \neq 0$).

It is guaranteed that a_1, \ldots, a_n are distinct.

Output

Output the answer.

The answer will be considered correct if its absolute or relative error doesn't exceed 10^{-6} .

Example

standard input	standard output
3	0.87500000000
1 0 0	
0 1 0	
001	