XIX Open Cup named after E.V. Pankratiev

Problem L. Travel

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2.5 seconds

256 mebibytes
"I'm tired of seeing the same scenery in the world." - Philosopher Pang
Pang's world can be simplified as a directed graph G with n vertices and m edges.
A path in G is an ordered list of vertices $\left(v_{0}, \ldots, v_{t-1}\right)$ for some non-negative integer t such that $v_{i} v_{i+1}$ is an edge in G for all $0 \leq i<t-1$. A path can be empty in this problem.
A cycle in G is an ordered list of distinct vertices $\left(v_{0}, \ldots, v_{t-1}\right)$ for some positive integer $t \geq 2$ such that $v_{i} v_{(i+1) \bmod t}$ is an edge in G for all $0 \leq i<t$. All circular shifts of a cycle are considered the same.
G satisfies the following property: Every vertex is in at most one cycle.

Given a fixed integer k, count the number of pairs $\left(P_{1}, P_{2}\right)$ modulo 998244353 such that

1. P_{1}, P_{2} are paths;
2. For every vertex $v \in G, v$ is in P_{1} or P_{2};
3. Let $c(P, v)$ be the number of occurrences of v in path P. For every vertex v of G, $c\left(P_{1}, v\right)+c\left(P_{2}, v\right) \leq k$.

Input

The first line contains 3 integers n, m and $k(1 \leq n \leq 2000,0 \leq m \leq 4000,0 \leq k \leq 1000000000)$.
Each of the next m lines contains two integers a and b, denoting an edge from vertex a to b $(1 \leq a, b \leq n, a \neq b)$.
No two edges connect the same pair of vertices in the same direction.

Output

Output one integer - the number of pairs (P_{1}, P_{2}) modulo 998244353.

Examples

	standard input	
2	2	1
1	2	6
2	1	standard output
2	2	2
1	2	30
2	1	103
3	3	3
1	2	
2	1	
1	3	

