Problem L. Travel

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	256 mebibytes

"I'm tired of seeing the same scenery in the world." — Philosopher Pang

Pang's world can be simplified as a directed graph G with n vertices and m edges.

A path in G is an ordered list of vertices (v_0, \ldots, v_{t-1}) for some non-negative integer t such that $v_i v_{i+1}$ is an edge in G for all $0 \le i < t-1$. A path can be empty in this problem.

A cycle in G is an ordered list of distinct vertices (v_0, \ldots, v_{t-1}) for some positive integer $t \ge 2$ such that $v_i v_{(i+1) \mod t}$ is an edge in G for all $0 \le i < t$. All circular shifts of a cycle are considered the same. G satisfies the following property: Every vertex is in at most one cycle.

Given a fixed integer k, count the number of pairs (P_1, P_2) modulo 998244353 such that

- 1. P_1, P_2 are paths;
- 2. For every vertex $v \in G$, v is in P_1 or P_2 ;
- 3. Let c(P, v) be the number of occurrences of v in path P. For every vertex v of G, $c(P_1, v) + c(P_2, v) \le k$.

Input

The first line contains 3 integers n, m and k $(1 \le n \le 2000, 0 \le m \le 4000, 0 \le k \le 100000000)$.

Each of the next m lines contains two integers a and b, denoting an edge from vertex a to b $(1 \le a, b \le n, a \ne b)$.

No two edges connect the same pair of vertices in the same direction.

Output

Output one integer — the number of pairs (P_1, P_2) modulo 998244353.

Examples

standard input	standard output
2 2 1	6
1 2	
2 1	
222	30
1 2	
2 1	
3 3 3	103
1 2	
2 1	
1 3	