

Yandex

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

 $``gshfd1jkhaRaadfglkjerVcvuy0gf"\ said\ Prof.\ Pang.$

To understand Prof. Pang's word, we would like to calculate the number of namomo subsequences of it. The word by Prof. Pang is a string s with n characters where each character is either an English letter (lower or upper case) or a digit. The *i*-th character of s is denoted by s[i] $(1 \le i \le n)$. A subsequence t of s is defined by a list of indices t_1, \ldots, t_6 such that $1 \le t_1 < t_2 < \ldots < t_6 \le n$. Let $compare(c_1, c_2)$ be a function on two characters such that $compare(c_1, c_2) = 1$ when $c_1 = c_2$ and $compare(c_1, c_2) = 0$ otherwise. t is a namomo subsequence of s if and only if for any $1 \le i < j \le 6$, $compare(s[t_i], s[t_j]) = compare(namomo[i], namomo[j])$, where namomo[x] represents the x-th character of the string "namomo" $(1 \le x \le 6)$.

Output the number of namomo subsequences of a given string s modulo 998244353.

Input

The first line contains a string s with n characters ($6 \le n \le 1000000$). s contains only lower case English letters ('a' - 'z'), upper case English letters ('A' - 'Z') and digits ('0' - '9').

Output

Output one integer – the answer modulo 998244353.

Examples

standard input	standard output
wohaha	1
momomo	0
gshfd1jkhaRaadfg1kjerVcvuy0gf	73
retiredMiFaFa0v0	33