Problem A. Namomo Subsequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 mebibytes
"gshfd1jkhaRaadfglkjerVcvuy0gf" said Prof. Pang.

To understand Prof. Pang's word, we would like to calculate the number of namomo subsequences of it. The word by Prof. Pang is a string s with n characters where each character is either an English letter (lower or upper case) or a digit. The i-th character of s is denoted by $s[i](1 \leq i \leq n)$. A subsequence t of s is defined by a list of indices t_{1}, \ldots, t_{6} such that $1 \leq t_{1}<t_{2}<\ldots<t_{6} \leq n$. Let compare $\left(c_{1}, c_{2}\right)$ be a function on two characters such that compare $\left(c_{1}, c_{2}\right)=1$ when $c_{1}=c_{2}$ and $\operatorname{compare}\left(c_{1}, c_{2}\right)=0$ otherwise. t is a namomo subsequence of s if and only if for any $1 \leq i<j \leq 6$, $\operatorname{compare}\left(s\left[t_{i}\right], s\left[t_{j}\right]\right)=\operatorname{compare}($ namomo $[i]$, namomo $[j])$, where namomo $[x]$ represents the x-th character of the string "namomo" ($1 \leq x \leq 6$).
Output the number of namomo subsequences of a given string s modulo 998244353.

Input

The first line contains a string s with n characters ($6 \leq n \leq 1000000$). s contains only lower case English letters (' a ' - ' Z '), upper case English letters ('A' - ' Z ') and digits (${ }^{\prime} 0$ ' - ' 9 ').

Output

Output one integer - the answer modulo 998244353.

Examples

standard input	standard output
wohaha	1
momomo	0
gshfd1jkhaRaadfglkjerVcvuy0gf	73
retiredMiFaFa0v0	33

