Problem E. Tube Master III

Input file:
Output file:
Time limit:
Memory limit:

```
standard input
standard output
1 second
256 mebibytes
```

Prof. Pang is playing "Tube Master". The game field is divided into $n \times m$ cells by $(n+1) \times m$ horizontal tubes and $n \times(m+1)$ vertical tubes. The product $n m$ is an even number. There are $(n+1)(m+1)$ crossings of the tubes. The 2D coordinate of the crossings are $(i, j)(1 \leq i \leq n+1,1 \leq j \leq m+1)$. We name the crossing with coordinate (i, j) as "crossing (i, j) ". We name the cell whose corners are crossings $(i, j),(i+1, j),(i, j+1),(i+1, j+1)$ as "cell (i, j) " for all $1 \leq i \leq n, 1 \leq j \leq m$. Additionally, each cell (i, j) contains an integer count $_{i, j}$.

The above figure shows a game field with $n=3, m=2$ (the third sample).
Prof. Pang decides to use some of the tubes. However, the game poses several weird restrictions.

1. Either 0 or 2 tubes connected to each crossing are used.
2. There are exactly count $t_{i, j}$ turning points adjacent to cell (i, j). A turning point is a crossing such that exactly 1 horizontal tube and exactly 1 vertical tube connected to it are used. A turning point (x, y) is adjacent to cell (i, j) if crossing (x, y) is a corner of cell (i, j).

It costs $a_{i, j}$ to use the tube connecting crossings (i, j) and $(i, j+1)$. It costs $b_{i, j}$ to use the tube connecting crossings (i, j) and $(i+1, j)$. Please help Prof. Pang to find out which tubes he should use such that the restrictions are satisfied and the total cost is minimized.

Input

The first line contains a single positive integer T denoting the number of test cases.
For each test case, the first line contains two integers n, $m(1 \leq n, m \leq 100)$ separated by a single space.
The i-th of the following n lines contains m integers count $_{i, 1}$, count $_{i, 2}, \ldots$, count $_{i, m}\left(0 \leq \operatorname{count}_{i, j} \leq 4\right)$ separated by single spaces.
The i-th of the following $n+1$ lines contains m integers $a_{i, 1}, a_{i, 2}, \ldots, a_{i, m}\left(1 \leq a_{i, j} \leq 10^{9}\right)$ separated by single spaces.
The i-th of the following n lines contains $m+1$ integers $b_{i, 1}, b_{i, 2}, \ldots, b_{i, m+1}\left(1 \leq b_{i, j} \leq 10^{9}\right)$ separated by single spaces.
It is guaranteed that $n m$ is an even number and that the total sum of $n m$ over all test cases does not exceed 10^{4}.

Output

For each test case, output an integer that denotes the minimum cost. If there is no valid configuration, output " -1 " instead.

Example

standard input	standard output
4	13
23	8
432	11
234	-1
211	
212	
121	
1212	
1112	
22	
21	
21	
12	
22	
12	
121	
211	
32	
12	
33	
32	
11	
11	
22	
11	
1111	
1111	
222	
22	
12	
34	
56	
78	
910	
111213	
141516	

