
XXII Open Cup named after E.V. Pankratiev
Stage 19: Grand Prix of China, Division 1, Sunday, July 31, 2022

Problem A. DFS Order
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 1024 megabytes

Prof. Pang has a rooted tree which is rooted at 1 with n nodes. These n nodes are numbered from 1 to
n.

Now he wants to start the depth-first search at the root. He wonders for each node v, what is the
minimum and the maximum position it can appear in the depth-first search order. The depth-first
search order is the order of nodes visited during the depth-first search. A node appears in the j-th
(1 ≤ j ≤ n) position in this order means it is visited after j − 1 other nodes. Because sons of a node can
be iterated in arbitrary order, multiple possible depth-first orders exist. Prof. Pang wants to know for
each node v, what are the minimum value and the maximum value of j such that v appears in the j-th
position.

Following is a pseudo-code for the depth-first search on a rooted tree. After its execution, dfs order is
the depth-first search order.

let dfs_order be an empty list

def dfs(vertex x):

append x to the end of dfs_order.

for (each son y of x): // sons can be iterated in arbitrary order.

dfs(y)

dfs(root)

Input

The first line contains a single integer T (1 ≤ T ≤ 106) denoting the number of test cases.

For each test case, the first line contains an integer n (1 ≤ n ≤ 105). Each of the next n−1 lines contains
two integers x and y, indicating node x is node y’s parent (1 ≤ x, y ≤ n). These edges form a tree rooted
at 1.

It is guaranteed that the sum of n over all test cases is no more than 106.

Output

For each test case, print n lines. The i-th line contains two integers denoting the minimum and the
maximum position node i can appear in the depth-first search order.

Example

standard input standard output

2

4

1 2

2 3

3 4

5

1 2

2 3

2 4

1 5

1 1

2 2

3 3

4 4

1 1

2 3

3 5

3 5

2 5

Page 1 of 18


