# Problem H <br> Longest Substring <br> Time Limit: 5.0 Seconds 

For a string $S$ of length $n \geq 1$ and a positive integer $k(1 \leq k \leq n)$, a non-empty substring of $S$ is called a $k$ substring if the substring appears exactly $k$ times. Such $k$ occurrences are not necessarily disjoint, i.e., are possibly overlapping. For example, if $S=$ "ababa", the $k$-substrings of $S$ for every $k=1, \ldots, 5$ are as follows:

- There are four 1-substrings in $S$, "abab", "ababa", "bab", and "baba" because these substrings appear exactly once in $S$. Note that "aba" is not a 1 -substring because it appears twice.
- There are four 2-substrings in $S$, "ab", "aba", "b", and "ba". The substring "ab" appears exactly twice without overlapping. Two occurrences of the substring "aba" are overlapped at a common character "a", but it does not appear three times or more.
- There is only one 3 -substring in $S$, "a".
- Neither 4-substrings nor 5-substrings exist in $S$.

For a $k$-substring $T$ of $S$, let $d(T)$ be the maximum number of the disjoint occurrences of $T$ in $S$. For example, a 2 -substring $T=$ "ab" can be selected twice without overlapping, that is, the maximum number of the disjoint occurrences is two, so $d(T)=2$. For a 2 -substring $T=$ "aba", it cannot be selected twice without overlapping, so $d(T)=1$. For a 3-substring $T=$ "a", it can be selected three times without overlapping, which is the maximum, so $d(T)=3$.

Let $f(k)$ be the length of the longest one among all $k$-substring $T$ with the largest $d(T)$ for $1 \leq k \leq n$. For example, $f(k)$ for $S=$ "ababa" and $k=1, \ldots, 5$ is as follows:

- For $k=1$, all 1 -substrings $T$ can be selected only once without overlapping, so $d(T)=1$. Thus, the longest one among all 1 -substrings with $d(T)=1$ is "ababa", so $f(1)=5$.
- For $k=2, d(T)=1$ for $T=$ "aba", but $d(T)=2$ for the other 2 -substrings $T=$ "ab", "b", "ba". Among 2-substrings with $d(T)=2$, "ab" and "ba" are the longest ones, so $f(2)=2$.
- For $k=3, f(3)=1$ because there is only one 3 -substring "a".
- For $k=4,5$, there are no $k$-substrings, so $f(4)=0$ and $f(5)=0$.

Given a string $S$ of length $n$, write a program to output $n$ values of $f(k)$ from $k=1$ to $k=n$. For the above example, the output should be 52100 .

## Input

Your program is to read from standard input. The input starts with a line containing the string $S$ consisting of $n$ ( $1 \leq n \leq 50,000$ ) lowercase alphabets.

## Output

Your program is to write to standard output. Print exactly one line. The line should contain exactly $n$ nonnegative integers, separated by a space, that represent $f(k)$ from $k=1$ to $k=n$ in order, that is, $f(1) f(2)$... $f(n)$. Note that $f(k)$ should be zero if there is no $k$-substring for some $k$.

The following shows sample input and output for two test cases.

Sample Input 1
Output for the Sample Input 1
ababa
52100

Sample Input 2
Output for the Sample Input 2

```
aaaaaaaa
```

