Problem K. Streets

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

You are given *n* vertical lines with x-coordinates x_1, x_2, \ldots, x_n and weights a_1, a_2, \ldots, a_n and *m* horizontal lines with y-coordinates y_1, y_2, \ldots, y_m and weights b_1, b_2, \ldots, b_m .

Call a rectangle good if and only if all of its four edges lie on the given lines. On this basis, define the cost of a good rectangle as the sum of the costs of its four segments. The cost of a segment is the product of its length and the weight of the line it belongs.

Find the maximum area of good rectangles with cost no more than c. Note that the length and the width of the rectangle can be zero, so the answer always exists.

You need to answer T queries with different c.

Input

The first line contains three integers $n, m \ (2 \le n, m \le 5\,000)$ and $T \ (1 \le T \le 100)$.

The second line contains n integers x_1, x_2, \ldots, x_n $(1 \le x_1 < x_2 < \ldots < x_n \le 10^5)$.

The third line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^7)$.

The fourth line contains m integers y_1, y_2, \ldots, y_n $(1 \le y_1 < y_2 < \ldots < y_n \le 10^5)$.

The fifth line contains m integers b_1, b_2, \ldots, b_n $(1 \le b_i \le 10^7)$.

Each of the next T lines contains a single integer c $(1 \le c \le 4 \times 10^{12})$, representing a query.

Output

For each query, output one line representing the answer.

Example

standard input	standard output
3 4 20	0
1 3 4	0
3 1 2	1
1 3 4 7	1
4 2 1 2	1
1	2
5	2
6	3
7	3
9	4
10	4
11	6
12	6
15	9
16	9
17	12
22	12
23	12
28	18
30	18
35	
43	
47	
49	
57	