## Problem L. Tree

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 512 megabytes |

You are given a tree $T$ with $n$ nodes. The tree is rooted at 1 . Define subtree $(u)$ as the set of nodes in the subtree of $u$.
Call a subset of nodes $S$ good if and only if $S$ satisfies at least one of the following contidions:

- For all $u, v \in S$ where $u \neq v$, either $u \in \operatorname{subtree}(v)$ or $v \in \operatorname{subtree}(u)$.
- For all $u, v \in S$ where $u \neq v$, both $u \notin \operatorname{subtree}(v)$ and $v \notin \operatorname{subtree}(u)$.

You need to partition all nodes of $T$ into several good subsets. Calculate the minimum number of subsets.

## Input

The first line contains a single integer $Q\left(1 \leq Q \leq 10^{5}\right)$, denoting the number of test cases.
For each test case, the first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$. The next line contains $n-1$ integers $p_{2}, p_{3}, \ldots, p_{n}\left(1 \leq p_{i}<i\right)$, indicating that there is an edge between $p_{i}$ and $i$ for each $i=2,3, \ldots, n$.
It is guaranteed that the sum of $n$ over all test cases is no more than $10^{6}$.

## Output

For each test case, output a single integer representing the answer.

## Example

|  |  |  |  |  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |
| 1 | 1 | 2 | 2 | 2 | 3 |  |  |  |
| 5 |  |  |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 |  |  |  |  |  |

