Problem L. Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

You are given a tree T with n nodes. The tree is rooted at 1. Define subtree(u) as the set of nodes in the subtree of u.

Call a subset of nodes S good if and only if S satisfies at least one of the following contidions:

- For all $u, v \in S$ where $u \neq v$, either $u \in \text{subtree}(v)$ or $v \in \text{subtree}(u)$.
- For all $u, v \in S$ where $u \neq v$, both $u \notin \text{subtree}(v)$ and $v \notin \text{subtree}(u)$.

You need to partition all nodes of T into several good subsets. Calculate the minimum number of subsets.

Input

The first line contains a single integer Q $(1 \le Q \le 10^5)$, denoting the number of test cases.

For each test case, the first line contains an integer n $(1 \le n \le 10^6)$. The next line contains n-1 integers p_2, p_3, \ldots, p_n $(1 \le p_i < i)$, indicating that there is an edge between p_i and i for each $i = 2, 3, \ldots, n$.

It is guaranteed that the sum of n over all test cases is no more than 10^6 .

Output

For each test case, output a single integer representing the answer.

Example

standard input	standard output
2	3
7	1
1 1 2 2 2 3	
5	
1 2 3 4	