E Equalising Audio

As a radio engineer at the Balanced Audio Podcast © your job is to deliver an equal listening experience at all times. You did a poll among the listeners and they are especially concerned about fluctuations in loudness. To resolve this you bought a transformer to equalise the audio, but alas, its software got corrupted during transport.

Your job is to rewrite the equalising software. As input the

transformer gets n amplitudes a_1, \ldots, a_n , with an average perceived loudness of $\frac{1}{n} \sum_{i=1}^n a_i^2$. The output should contain the same amplitudes, but renormalised by some constant positive factor, such that the average perceived loudness is x. There is one exception: total silence should always be preserved.

Input

The input consists of:

- One line with a two integers n and x $(1 \le n \le 10^5, 0 \le x \le 10^6)$, the number of amplitudes and the average perceived loudness to achieve.
- One line with n integers a_1, \ldots, a_n ($|a_i| \le 10^6$), the amplitudes.

Output

Output one line containing n numbers, the renormalised amplitudes with an average perceived loudness of x.

Your answers should have an absolute or relative error of at most 10^{-6} .

Sample Input 1	Sample Output 1	
5 6	0 1 -2 3 -4	
0 1 -2 3 -4		

Sample Input 2

4 1		
1337		

Sample Output 2

0.242535625 0.7276068751 0.7276068751 1.697749375

CC BY-SA 4.0 by Rburtonresearch on Wikipedia

Time limit: 4s