## Problem C. DFS Order 2

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1.5 seconds

512 megabytes

Prof. Pang has a rooted tree that is rooted at vertex 1 and has $n$ nodes. These $n$ nodes are numbered from 1 to $n$.
Now he wants to start the depth-first search at the root. He wonders for each node $v$, how many ways it can appear in the $j$-th position of depth-first search order. The depth-first search order is the order of nodes visited during the depth-first search. A node appears in the $j$-th $(1 \leq j \leq n)$ position in this order means it is visited after $j-1$ other nodes. Because sons of a node can be iterated in arbitrary order, multiple possible depth-first orders exist.
Prof. Pang wants to know for each node $v$, how many different depth-first search orders such that $v$ appears in the $j$-th position. For each $v, j(1 \leq v, j \leq n)$, compute the answer. Because the answer can be very large, output it modulo 998244353.
Following is a pseudo-code for the depth-first search on a rooted tree. After calling MAIN(), dfs_order is the depth-first search order.

```
Algorithm 1 An implementation of depth-first search
    procedure DFS(vertex \(x\) )
        Append \(x\) to the end of dfs_order
        for each son \(y\) of \(x\) do \(\quad \triangleright\) Sons can be iterated in arbitrary order.
            DFS \((y)\)
        end for
    end procedure
    procedure MAIN()
        Let dfs_order be a global variable
        dfs_order \(\leftarrow\) empty list
        DFS(1)
    end procedure
```


## Input

The first line contains one integer $n(1 \leq n \leq 500)$, the number of vertices in the tree.
Each of the next $n-1$ lines describes an edge of the tree. Edge $i$ is denoted by two integers $u_{i}$ and $v_{i}$, the labels of vertices it connects ( $1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}$ ).
It is guaranteed that the given edges form a tree.

## Output

For each vertex $v$ from 1 to $n$, output one line containing $n$ integers modulo 998244353. The $j$-th integer in the $v$-th line should be the number of different depth-first search orders such that $v$ appears in the $j$-th position.

## Example

|  | standard input |  |  |  |  |  | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 0 | 0 | 0 | 0 |  |  |  |
| 1 | 2 | 0 | 2 | 0 | 0 | 2 |  |
| 1 | 3 | 0 | 2 | 2 | 0 | 0 |  |
| 3 | 4 | 0 | 0 | 1 | 2 | 1 |  |
| 3 | 5 | 0 | 0 | 1 | 2 | 1 |  |

