Problem G. Quick Sort

Input file: standard input
Output file: standard output
Time limit: 5 seconds
Memory limit: 512 megabytes

When Prof. Pang was young, he wrote the following code for quick sort. Please calculate how many swaps are performed when calling QUICKSORT(A, 1, n). A is a given permutation with length n.

Algorithm 2 An implementation of quick sort

```
1: procedure QUICKSORT(A, lo, hi)
        if lo \ge 0 and hi \ge 0 and lo < hi then
            p \leftarrow \text{PARTITION}(A, lo, hi)
 3:
            QUICKSORT(A, lo, p)
 4:
            QUICKSORT(A, p + 1, hi)
 5:
        end if
 6:
 7: end procedure
   procedure PARTITION(A, lo, hi)
        pivot \leftarrow A[floor((hi + lo)/2)]
 9:
        i \leftarrow lo - 1
10:
        j \leftarrow hi + 1
11:
        while True do
12:
            repeat
13:
                i \leftarrow i + 1
14:
            until A[i] \ge pivot
15:
16:
            repeat
                j \leftarrow j - 1
17:
            until A[j] \leq pivot
18:
            if i \geq j then
19:
                return j
20:
21:
            end if
            Swap A[i] with A[j]
22:
        end while
23:
24: end procedure
```

Input

The first line contains one integer T ($1 \le T \le 10^5$), the number of test cases.

For each test case, the first line contains one positive integer n $(1 \le n \le 5 \times 10^5)$. The next line contains n integers a_1, \ldots, a_n $(1 \le a_i \le n)$ denoting the permutation A. It is guaranteed that a_1, \ldots, a_n form a permutation, i.e. $a_i \ne a_j$ for $i \ne j$.

It is guaranteed that the sum of n over all test cases is no more than 5×10^5 .

Output

For each test case, output one line containing the number of swaps performed when calling quicksort(A, 1, n).

Example

standard input	standard output
3	1
3	4
3 2 1	7
5	
2 4 5 3 1	
10	
7 2 4 6 1 9 10 8 5 3	