Problem G. Quick Sort

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 megabytes

When Prof. Pang was young, he wrote the following code for quick sort. Please calculate how many swaps are performed when calling $\operatorname{Quicksort}(A, 1, n) . A$ is a given permutation with length n.

```
Algorithm 2 An implementation of quick sort
    procedure \(\operatorname{QUICKSORT}(A, l o, h i)\)
        if \(l o \geq 0\) and \(h i \geq 0\) and \(l o<h i\) then
            \(p \leftarrow \operatorname{Partition}(A, l o, h i)\)
            QUicksort \((A, l o, p)\)
            \(\operatorname{QUicksort}(A, p+1, h i)\)
        end if
    end procedure
    procedure partition \((A, l o, h i)\)
        pivot \(\leftarrow A[\) floor \(((h i+l o) / 2)]\)
        \(i \leftarrow l o-1\)
        \(j \leftarrow h i+1\)
        while True do
            repeat
                \(i \leftarrow i+1\)
            until \(A[i] \geq\) pivot
            repeat
                \(j \leftarrow j-1\)
            until \(A[j] \leq\) pivot
            if \(i \geq j\) then
                return \(j\)
            end if
            Swap \(A[i]\) with \(A[j]\)
        end while
    end procedure
```


Input

The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, the number of test cases.
For each test case, the first line contains one positive integer $n\left(1 \leq n \leq 5 \times 10^{5}\right)$. The next line contains n integers $a_{1}, \ldots, a_{n}\left(1 \leq a_{i} \leq n\right)$ denoting the permutation A. It is guaranteed that a_{1}, \ldots, a_{n} form a permutation, i.e. $a_{i} \neq a_{j}$ for $i \neq j$.
It is guaranteed that the sum of n over all test cases is no more than 5×10^{5}.

Output

For each test case, output one line containing the number of swaps performed when calling quicksort $(A, 1, n)$.

Example

standard input	standard output
3	1
3	4
321	7
5	
24531	
10	
72461910853	

