Problem H. Set of Intervals

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Prof. Pang has a multi-set of intervals $S = \{[l_i, r_i]\}(l_i < r_i).$

Prof. Pang will perform the following operation for |S| - 1 times:

• Select two intervals [a, b] and [c, d] from S, and then choose two integers x, y satisfying $x \in [a, b], y \in [c, d], x < y$. After that, delete [a, b] and [c, d] from S, and add [x, y] to S.

It's easy to find that S contains exactly one interval after the operations, and Prof. Pang will get the interval as a gift.

Now Prof. Pang wants you to calculate how many different intervals he can get.

Input

The first line contains one integer T $(1 \le T \le 10^4)$, the number of test cases.

For each test case, the first line contains one integer $n \ (1 \le n \le 10^5)$ — the size of S. Each of the following n lines contains two integers l_i and $r_i \ (1 \le l_i < r_i \le 10^9)$, describing the *i*-th interval in S.

It is guaranteed that the sum of n over all test cases is no more than 10^5 .

Output

For each test case, output one line containing the answer to Prof. Pang's question.

Example

standard input	standard output
4	1
1	49999999950000000
1 100000000	26
2	28
1 100000000	
1 100000000	
4	
1 2	
3 4	
5 6	
78	
4	
1 3	
2 4	
58	
6 7	
	1