Problem H. Set of Intervals

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Prof. Pang has a multi-set of intervals $S=\left\{\left[l_{i}, r_{i}\right]\right\}\left(l_{i}<r_{i}\right)$.
Prof. Pang will perform the following operation for $|S|-1$ times:

- Select two intervals $[a, b]$ and $[c, d]$ from S, and then choose two integers x, y satisfying $x \in[a, b], y \in[c, d], x<y$. After that, delete $[a, b]$ and $[c, d]$ from S, and add $[x, y]$ to S.

It's easy to find that S contains exactly one interval after the operations, and Prof. Pang will get the interval as a gift.
Now Prof. Pang wants you to calculate how many different intervals he can get.

Input

The first line contains one integer $T\left(1 \leq T \leq 10^{4}\right)$, the number of test cases.
For each test case, the first line contains one integer $n\left(1 \leq n \leq 10^{5}\right)$ - the size of S. Each of the following n lines contains two integers l_{i} and $r_{i}\left(1 \leq l_{i}<r_{i} \leq 10^{9}\right)$, describing the i-th interval in S.
It is guaranteed that the sum of n over all test cases is no more than 10^{5}.

Output

For each test case, output one line containing the answer to Prof. Pang's question.

Example

standard input	standard output	
4	1	499999999500000000
1	1000000000	26
2	28	
1	1000000000	
1	1000000000	
4	2	
1	2	
3	4	
5	6	
7	8	
4	3	1
1	4	
2	8	
6	7	

