Problem I. Shortest Path

Input file:
Output file: standard output
Time limit:
Memory limit: $\quad 512$ megabytes

You are given an undirected weighted graph G with vertices $1,2, \ldots, n$. Please output the sum of the answers to the following x questions:

- The i-th question $(1 \leq i \leq x)$: What is the minimum length of path that starts at vertex 1 , ends at vertex n, and contains exactly i edges?

For each question, if such a path does not exist, the answer is considered to be 0 . A path may use one edge multiple times. Output the answer modulo 998244353.

Input

The first line contains one integer $T(1 \leq T \leq 2000)$, the number of test cases.
For each test case, the first line contains three integers n, $m, x\left(1 \leq n \leq 2000,0 \leq m \leq 5000,1 \leq x \leq 10^{9}\right)$. Each of the next m lines describes an edge of the graph. Edge i is denoted by three integers a_{i}, b_{i}, w_{i} $\left(1 \leq a_{i}, b_{i} \leq n, 1 \leq w_{i} \leq 10^{9}\right)$, the labels of vertices it connects and its weight. Note that self-loops and parallel edges may exist.
It is guaranteed that the sum of n over all test cases is no more than 2000 and the sum of m over all test cases is no more than 5000 .

Output

For each test case, output one integer modulo 998244353 denoting the answer.

Example

	standard input		standard output
4		125	0
3	2	10	15300
1	2	5	840659991
2	3	4	
3	0	1000000000	
3	3	100	
1	2	3	
1	3	4	
2	3	5	
4	6	100000000	
1	2	244	
1	2	325	
1	4	927	
3	3	248	
2	4	834	
3	4	285	

