Problem L. Tree Distance

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 megabytes

You are given an unrooted weighted tree T with vertices $1,2, \ldots, n$. Please answer some queries.
We define $\operatorname{dist}(i, j)$ as the distance between vertex i and vertex j in T.
For each query, you are given two integers l, r. Please answer the value of

$$
\min _{l \leq i<j \leq r}(\operatorname{dist}(i, j))
$$

Input

The first line contains one integer $n\left(1 \leq n \leq 2 \times 10^{5}\right)$, the number of vertices in the tree.
Each of the next $n-1$ lines describes an edge of the tree. Edge i is denoted by three integers a_{i}, b_{i}, w_{i} $\left(1 \leq a_{i}, b_{i} \leq n, 1 \leq w_{i} \leq 10^{9}\right)$, the labels of vertices it connects and its weight.
Then one line contains one integer $q\left(1 \leq q \leq 10^{6}\right)$, the number of queries.
Each of the following q lines contains two integers $l, r(1 \leq l \leq r \leq n)$ describing a query.
It is guaranteed that the given edges form a tree.

Output

For each query, output the answer in one line. If there is no i, j such that $1 \leq i<j \leq r$, the answer is -1 .

Example

	standard input		standard output	
5		-1		
1	2	5	3	
1	3	3	7	
1	4	4		7
3	5	2	2	
5				
1	1			
1	4			
2	4			
3	4			
2	5			

