E ETA

You want to design a level for a computer game. The level can be described as a connected undirected graph with vertices numbered from 1 to n. In the game, the player's character is dropped at one of the n vertices uniformly at random and their goal is to reach the exit located at vertex 1 as quickly as possible. Traversing an edge takes exactly 1 second.

Figure E.1: Illustration of Sample Output 3, a level where the average optimal time to reach vertex 1 is $\frac{7}{4}$.

The difficulty of the level is determined by the average optimal time to reach the exit. Given a target value for this average optimal time, construct a level so that this target value is reached. See Figure E. 1 for an example.

Input

The input consists of:

- One line with two coprime integers a and $b(1 \leq a, b \leq 1000)$ separated by a '/', giving the desired average optimal time to reach the exit as the fraction $\frac{a}{b}$.

Output

If no connected graph with the average optimal time $\frac{a}{b}$ to reach vertex 1 exists, output "impossible". Otherwise, output one such graph in the following format:

- Two integers n and $m\left(1 \leq n, m \leq 10^{6}\right)$, the number of vertices and the number of edges.
- m pairs of integers u and $v(1 \leq u, v \leq n)$, indicating an edge between vertices u and v.

The graph may include self loops and parallel edges. You are given that if there exists a valid graph, then there also exists one with $1 \leq n, m \leq 10^{6}$.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1

| $1 / 2$ | 2 1
 1 2 |
| :--- | :--- | :--- |

Sample Input 2 Sample Output 2
1/3
impossible

Sample Input 3
Sample Output 3

7/4	$\begin{array}{ll} 8 & 12 \\ 1 & 2 \\ 1 & 3 \\ 2 & 3 \\ 2 & 4 \\ 3 & 5 \\ 3 & 6 \\ 4 & 5 \\ 5 & 6 \\ 4 & 7 \\ 5 & 7 \\ 4 & 8 \\ 6 & 8 \end{array}$

