E ETA

Time limit: 2s

You want to design a level for a computer game. The level can be described as a connected undirected graph with vertices numbered from 1 to n. In the game, the player's character is dropped at one of the n vertices uniformly at random and their goal is to reach the exit located at vertex 1 as quickly as possible. Traversing an edge takes exactly 1 second.

Figure E.1: Illustration of Sample Output 3, a level where the average optimal time to reach vertex 1 is $\frac{7}{4}$.

The difficulty of the level is determined by the average optimal time to reach the exit. Given a target value for this average optimal time, construct a level so that this target value is reached. See Figure E.1 for an example.

Input

The input consists of:

• One line with two coprime integers a and b $(1 \le a, b \le 1000)$ separated by a '/', giving the desired average optimal time to reach the exit as the fraction $\frac{a}{b}$.

Output

If no connected graph with the average optimal time $\frac{a}{b}$ to reach vertex 1 exists, output "impossible". Otherwise, output one such graph in the following format:

- Two integers n and m $(1 \le n, m \le 10^6)$, the number of vertices and the number of edges.
- *m* pairs of integers *u* and *v* $(1 \le u, v \le n)$, indicating an edge between vertices *u* and *v*.

The graph may include self loops and parallel edges. You are given that if there exists a valid graph, then there also exists one with $1 \le n, m \le 10^6$.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1	Sample Output 1
1/2	2 1
	1 2

Sample Input 2	Sample Output 2
1/3	impossible

Sample Input 3	Sample Output 3
7/4	8 12
	1 2
	1 3
	2 3
	2 4
	3 5
	3 6
	4 5
	5 6
	4 7
	5 7
	4 8
	6 8