I Interview Question

Fizz Buzz is a party game that is often used as a programming exercise in job interviews. In the game, there are two positive integers a and b, and the game consists of counting up through the positive integers, replacing any number by Fizz if it is a multiple of a, by Buzz if it is a multiple of b, and by FizzBuzz if it is a multiple of both a and b. The most common form of the game has $a=3$ and $b=5$, but other parameters are allowed.

Your task here is to solve the reverse problem: given a transcript of part of the game (not necessarily starting at 1), find possible values of a and b that could have been used to generate it.

Figure I. 1 shows some sample sequences for various values of a and b.

```
a=3,b=5: 1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz
a=6,b=2: 1 Buzz 3 Buzz 5 FizzBuzz 7 Buzz 9 Buzz 11 FizzBuzz 13
a=4,b=4: 1 2 3 FizzBuzz 5 6 7 FizzBuzz 9 10 11 FizzBuzz 13 14
```

Figure I.1: Example sequences for Fizz Buzz.

Input

The input consists of:

- One line with two integers c and $d\left(1 \leq c \leq d \leq 10^{5}\right)$, indicating that your transcript starts at c and ends at d.
- One line with $d-c+1$ integers and strings, the contents of the transcript.

It is guaranteed that the transcript is valid for some integers a and b with $1 \leq a, b \leq 10^{6}$, according to the rules laid out above.

Output

Output two positive integers a and $b\left(1 \leq a, b \leq 10^{6}\right)$ that are consistent with the given transcript.

If there are multiple valid solutions, you may output any one of them.
Sample Input $1 \quad$ Sample Output 1

7	11	
7	8 Fizz Buzz 11	35

Sample Input 2	Sample Output 2
4999950002	2125
49999 FizzBuzz 50001 Fizz	

Sample Input 3 Sample Output 3

8 Buzz Buzz FizzBuzz Buzz	101

Sample Input 4
Sample Output 4

10	15					8	23
10	11	12	13	14	15		

