Problem J. Jumbled Trees

Time limit:	3 seconds
Memory limit:	1024 megabytes

You are given an undirected connected graph with n vertices and m edges. Each edge has an associated counter, initially equal to 0. In one operation, you can choose an arbitrary spanning tree and add any value v to all edges of this spanning tree.

Determine if it's possible to make every counter equal to its target value x_i modulo prime p, and provide a sequence of operations that achieves it.

Input

The first line contains three integers n, m, and p — the number of vertices, the number of edges, and the prime modulus ($1 \le n \le 500$; $1 \le m \le 1000$; $2 \le p \le 10^9$, p is prime).

Next *m* lines contain three integers u_i , v_i , x_i each — the two endpoints of the *i*-th edge and the target value of that edge's counter $(1 \le u_i, v_i \le n; 0 \le x_i < p; u_i \ne v_i)$.

The graph is connected. There are no loops, but there may be multiple edges between the same two vertices.

Output

If the target values on counters cannot be achieved, print -1.

Otherwise, print t — the number of operations, followed by t lines, describing the sequence of operations. Each line starts with integer v ($0 \le v < p$) — the counter increment for this operation. Then, in the same line, followed by n - 1 integers $e_1, e_2, \ldots e_{n-1}$ ($1 \le e_i \le m$) — the edges of the spanning tree.

The number of operations t should not exceed 2m. You don't need to minimize t. Any correct answer within the 2m bound is accepted. You are allowed to repeat spanning trees.

standard input	standard output
3 3 101	3
1 2 30	10 1 2
2 3 40	20 1 3
3 1 50	30 2 3
2 2 37	2
1 2 8	8 1
1 2 15	15 2
545	-1
1 3 1	
2 3 2	
253	
4 1 4	

Examples