Problem J. Jumbled Trees

Time limit:

3 seconds
Memory limit: 1024 megabytes
You are given an undirected connected graph with n vertices and m edges. Each edge has an associated counter, initially equal to 0 . In one operation, you can choose an arbitrary spanning tree and add any value v to all edges of this spanning tree.
Determine if it's possible to make every counter equal to its target value x_{i} modulo prime p, and provide a sequence of operations that achieves it.

Input

The first line contains three integers n, m, and p - the number of vertices, the number of edges, and the prime modulus ($1 \leq n \leq 500 ; 1 \leq m \leq 1000 ; 2 \leq p \leq 10^{9}, p$ is prime).
Next m lines contain three integers u_{i}, v_{i}, x_{i} each - the two endpoints of the i-th edge and the target value of that edge's counter $\left(1 \leq u_{i}, v_{i} \leq n ; 0 \leq x_{i}<p ; u_{i} \neq v_{i}\right)$.
The graph is connected. There are no loops, but there may be multiple edges between the same two vertices.

Output

If the target values on counters cannot be achieved, print -1 .
Otherwise, print t - the number of operations, followed by t lines, describing the sequence of operations. Each line starts with integer $v(0 \leq v<p)$ - the counter increment for this operation. Then, in the same line, followed by $n-1$ integers $e_{1}, e_{2}, \ldots e_{n-1}\left(1 \leq e_{i} \leq m\right)$ - the edges of the spanning tree.
The number of operations t should not exceed $2 m$. You don't need to minimize t. Any correct answer within the $2 m$ bound is accepted. You are allowed to repeat spanning trees.

Examples

$\left.\begin{array}{|lll|lll|}\hline & \text { standard input } & & & \text { standard output } \\ \hline 3 & 3 & 101 & 3 & & \\ 1 & 2 & 30 & 10 & 1 & 2 \\ 2 & 3 & 40 & 20 & 1 & 3 \\ 3 & 1 & 50 & 30 & 2 & 3\end{array}\right]$

