Problem L. Lisa's Sequences

Time limit: $\quad 5$ seconds
Memory limit: 1024 megabytes
Lisa loves playing with the sequences of integers. When she gets a new integer sequence a_{i} of length n, she starts looking for all monotone subsequences. A monotone subsequence $[l, r]$ is defined by two indices l and $r(1 \leq l<r \leq n)$ such that $\forall i=l, l+1, \ldots, r-1: a_{i} \leq a_{i+1}$ or $\forall i=l, l+1, \ldots, r-1: a_{i} \geq a_{i+1}$.
Lisa considers a sequence a_{i} to be boring if there is a monotone subsequence $[l, r]$ that is as long as her boredom threshold k, that is when $r-l+1=k$.
Lucas has a sequence b_{i} that he wants to present to Lisa, but the sequence might be boring for Lisa. So, he wants to change some elements of his sequence b_{i}, so that Lisa does not get bored playing with it. However, Lucas is lazy and wants to change as few elements of the sequence b_{i} as possible. Your task is to help Lucas find the required changes.

Input

The first line of the input contains two integers n and $k\left(3 \leq k \leq n \leq 10^{6}\right)$ - the length of the sequence and Lisa's boredom threshold. The second line contains n integers $b_{i}\left(1 \leq b_{i} \leq 99999\right)$ - the original sequence that Lucas has.

Output

On the first line output an integer m - the minimal number of elements in b_{i} that needs to be changed to make the sequence not boring for Lisa. On the second line output n integers $a_{i}\left(0 \leq a_{i} \leq 100000\right)$, so that the sequence of integers a_{i} is not boring for Lisa and is different from the original sequence b_{i} in exactly m positions.

Examples

standard input	standard output
53	2
12345	10305
63	3
111111	11000000101
64	1
114411	114011
64	2
444222	440202
64	1
444344	44100000344
84	2
21133112	21130102
104	2
1112211221	11100000221000001221
75	0
5443444	5443444
1010	1
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$

