Problem E. Easily Distinguishable Triangles

Time limit:	2 seconds
Memory limit:	512 megabytes

Eva loves painting. Today she is working with a square canvas of $n \times n$ unit cells. Each cell is painted white, painted black, or empty — not painted at all.

Eva is going to draw a black triangle inside each empty cell. She wants each triangle to be right-angled and have an area of $\frac{1}{2}$ square unit cells. Thus, there are four ways to draw a single triangle:

Each triangle is a piece of art, and Eva wants them to be easily distinguishable from the rest of the painting. To achieve that, no two black triangles may share a common side with each other, and no black triangle may share a common side with a black square. Note that two black squares are allowed to share a common side.

Help Eva to find out how many ways there are to finish her painting. Since the number can be large, calculate it modulo $998\,244\,353$.

Input

The first line contains a single integer n — the side length of the canvas $(1 \le n \le 1000)$.

The next *n* lines describe the canvas from top to bottom. The *i*-th of these lines contains *n* characters $s_{i,1}, s_{i,2}, \ldots, s_{i,n}$. If $s_{i,j} = `.`$, the cell in the *i*-th row and the *j*-th column of the canvas is painted white. If $s_{i,j} = `#`$, that cell is painted black. If $s_{i,j} = `?`$, that cell is empty.

Output

Print a single integer denoting the number of ways to finish Eva's painting, modulo 998 244 353.

Examples

standard input	standard output
2	4
.?	
?#	
3	1
#??	
#??	
?##	
3	0
.#.	
#?#	
.#.	

Note

In the first example test, there are 4 ways to finish the painting, as illustrated below:

ICPC 2022-2023 North-Western Russia Regional Contest St Petersburg, October 29, 2022

In the second example test, there is a single way to finish the painting:

In the third example test, regardless of how Eva draws the triangle in the center cell, it will share two sides with black squares.