Problem F. Focusing on Costs

$\begin{array}{ll}\text { Time limit: } & 2 \text { seconds } \\ \text { Memory limit: } & 512 \text { megabytes }\end{array}$
In modern gadgets, it's crucial to trim down the fat and get rid of unnecessary features, like a headphone jack. The same trend applies to the calculator industry.

In their pursuit for minimalism, Cosio calculator company started to produce calculators that have a single display and can only compute trigonometric functions sin, cos, \tan and their inverses asin, acos, atan.
Initially, the calculator's display shows the number 0 . After that, for each of the functions listed above, you can press a button that applies that function to the displayed number. If the operation is inapplicable or produces infinity, then the calculator breaks and stops responding.
You took it as a challenge to figure out what you can achieve using this calculator. Find a way to compute $\frac{a}{b}$ using at most 1000 operations.

Input

The only line contains two integers a and $b(1 \leq a, b \leq 10)$.

Output

In the first line, print a single integer k - the number of button presses in your solution ($1 \leq k \leq 1000$). In the second line, print the applied operations in order, separated by spaces.
The solution will be checked with a program in C++ using the standard 64-bit floating-point type: double. Your answer will be considered correct if the sequence of actions does not cause an error, and in the end the calculator displays $\frac{a}{b}$ with an absolute error of at most 10^{-9}.
You do not have to find the shortest solution. Any solution satisfying the constraints will be accepted.

Examples

standard input	standard output
11	4 atan $\cos \sin$ asin
21	11 \cos atan sin atan sin atan sin atan sin acos tan

