Problem H. Hidden Digits

Time limit: 5 seconds Memory limit: 512 megabytes

You are given a sequence of n digits $d_0, d_1, \ldots d_{n-1}$. Find the minimum positive integer x such that for all $0 \le i < n$, the decimal representation of number x + i contains the digit d_i .

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). The description of the test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 10^6$).

The second line contains a string of n digits $d_0d_1 \dots d_{n-1} \ (0 \le d_i \le 9)$.

It is guaranteed that the sum of n over all test cases does not exceed 10^6 .

Output

For each test case, print a single integer x — the smallest positive integer such that the decimal representation of x + i contains the digit d_i for all $0 \le i < n$.

Example

standard input	standard output
6	1
5	10
12345	92
5	45296
01234	701
3	10367486
239	
9	
998244353	
10	
100000007	
20	
18446744073709551616	