Problem K. K-Shaped Figures

Time limit: $\quad 3$ seconds
Memory limit: $\quad 512$ megabytes
Let's say that three segments on a plane form a K-shaped figure if:

- two of them share a common endpoint;
- this common endpoint lies strictly inside the third segment;
- these two segments are located on the same side with respect to the third one;
- all three segments are pairwise not collinear.

$\{A B, C D, C E\}\{A B, C D, C E\}$

Valid K-shaped figures

You are given a collection of n segments on the plane. Find the number of triples of segments from this collection that form a K-shaped figure.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 3333)$. The description of the test cases follows.

The first line of each test case contains a single integer n - the number of segments ($3 \leq n \leq 1000$).
The i-th of the following n lines contains four integers $x_{i, 1}, y_{i, 1}, x_{i, 2}, y_{i, 2}$ - the coordinates of endpoints of the i-th segment $\left(-10^{6} \leq x_{i, 1}, y_{i, 1}, x_{i, 2}, y_{i, 2} \leq 10^{6}\right)$. All segments have positive lengths. Some segments may coincide.
It is guaranteed that the sum of n over all test cases does not exceed 10^{4}.

Output

For each test case, print a single integer - the number of triples of segments that form a K-shaped figure.

Example

			standard input	
2				6
5				
0	0	0	10	
0	5	3	10	
0				
0	5	3	0	
0	7	4		
0	5	6	2	
8				
0	0	10	10	
3	4	4	4	
4	4	4	5	
3	4	4	4	
7	7	7	8	
7	7	8	7	
5	5	4	6	
5	5	3	7	

