Problem L. Levenshtein Distance

Input file: standard input
Output file: standard output
Time limit: 4 seconds
Memory limit: 1024 megabytes
The Levenshtein Distance between two strings is the smallest number of simple one-letter operations needed to change one string to the other. The operations are:

- Adding a letter anywhere in the string.
- Removing a letter from anywhere in the string.
- Changing any letter in the string to any other letter.

You will be given a number k and two strings S and T. Your task is to find the number of non-empty substrings of T whose Levenshtein Distance between S is exactly i for every possible non-negative integer $i(0 \leq i \leq k)$. Two substrings are considered different if and only if they occur in different places.

Input

The first line contains a single integer $k(0 \leq k \leq 30)$, denoting the parameter k.
The second line contains a string $S\left(1 \leq|S| \leq 10^{5}\right)$, denoting the pattern string.
The third line contains a string $T\left(1 \leq|T| \leq 10^{5}\right)$, denoting the text string.
It is guaranteed that the input strings only consist of lowercase English letters ('a' to 'z'), uppercase English letters ('A' to 'Z'), and digits (' 0 ' to ' 9 ').

Output

Output $k+1$ lines, the i-th $(1 \leq i \leq k+1)$ of which contains an integer denoting the number of substrings of T whose Levenshtein Distance between S is exactly $i-1$.

Example

	standard input	standard output
4	0	
aaa	5	
	15	

