In mathematics, the factorial of a positive integer number n is written as n ! and is defined as follows:

$$
n!=1 \times 2 \times 3 \times 4 \times \cdots \times(n-1) \times n=\prod_{i=1}^{n} i
$$

The value of 0 ! is considered as 1 . n ! grows very rapidly with the increase of n. Some values of n ! are:

$$
\begin{array}{ll}
0!=1 & 5!=120 \\
1!=1 & 10!=3628800 \\
2!=2 & 14!=87178291200 \\
3!=6 & 18!=6402373705728000 \\
4!=24 & 22!=1124000727777607680000
\end{array}
$$

You can see that for some values of n, n ! has odd number of trailing zeroes (eg 5!, 18!) and for some values of $n, n!$ has even number of trailing zeroes (eg $0!, 10!, 22!$). Given the value of n, your job is to find how many of the values $0!, 1!, 2!, 3!, \ldots,(n-1)!, n$! has even number of trailing zeroes.

INPUT

Input file contains at most 1000 lines of input. Each line contains an integer $n\left(0 \leq n \leq 10^{18}\right)$. Input is terminated by a line containing a -1 .

OUTPUT

For each line of input produce one line of output. This line contains an integer which denotes how many of the numbers $0!, 1!, 2!, 3!, \ldots, n!$, contains even number of trailing zeroes.

SAMPLE INPUT	SAMPLE OUTPUT
2	3
3	4
10	6
100	61
1000	525
2000	1050
3000	1551
10000	5050
100000	50250
200000	100126
-1	

