Problem I. Perfect Palindrome

Given a string $S=s_{0} s_{1} \cdots s_{n-1}$ of length n, let $f(S, d)$ be the string obtained by shifting S to the left d times. That is $f(S, d)=s_{(d+0) \bmod n} s_{(d+1) \bmod n} \cdots s_{(d+n-1) \bmod n}$. We say S is a perfect palindrome if for all non-negative integer $d, f(S, d)$ is a palindrome.
You're now given a string $A=a_{0} a_{1} \cdots a_{n-1}$ of length n consisting only of lower-cased English letters. You can perform the following operation on A any number of times (including zero times): Choose an integer i such that $0 \leq i<n$ and change a_{i} to any lower-cased English letter.
Calculate the minimum number of operations needed to change A into a perfect palindrome.
We say a string $P=p_{0} p_{1} \cdots p_{n-1}$ of length n is a palindrome, if $p_{i}=p_{n-1-i}$ for all $0 \leq i<n$.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first and only line contains a string $a_{0} a_{1} \cdots a_{n-1}\left(1 \leq n \leq 10^{5}\right)$ consisting only of lower-cased English letters.
It is guaranteed that the total length of strings of all test cases will not exceed 10^{6}.

Output

For each test case output one line containing one integer indicating the minimum number of operations needed to change A into a perfect palindrome.

Example

standard input	standard output
2	2
abcb	0

Note

For the first sample test case, we can change the first and the third characters to 'b' so the string becomes "bbbb". It is easy to see that for all non-negative integer d, f ("bbbb", d) $=$ "bbbb" and "bbbb" is a palindrome, so "bbbb" is a perfect palindrome. These changes cost us 2 operations and it can be proven that this is the minimum number of operations needed.
For the second sample test case, "xxx" is already a perfect palindrome, so no changes are needed.

