## Problem J. Perfect Matching

Given an undirected graph with $n$ vertices ( $n$ is even) and also given $n$ integers $a_{1}, a_{2}, \cdots, a_{n}$, for all positive integers $i$ and $j$ satisfying $1 \leq i<j \leq n$ and $|i-j|=\left|a_{i}-a_{j}\right|(|x|$ indicates the absolute value of $x$ ) we connect vertices $i$ and $j$ with an undirected edge in the graph. It's obvious that this undirected graph does not contain self loops or multiple edges.
Find a perfect matching of this undirected graph, or state that a perfect matching does not exist.
Recall that a perfect matching of a graph is a subset of size $\frac{n}{2}$ of all the edges in the graph, such that each vertex in the graph is connected by one edge in this subset.

## Input

There are multiple test cases. The first line of the input contains an integer $T$ indicating the number of test cases. For each test case:
The first line contains an even integer $n\left(2 \leq n \leq 10^{5}\right)$ indicating the number of vertices in the undirected graph.
The second line contains $n$ integers $a_{1}, a_{2}, \cdots, a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$.
It's guaranteed that the sum of $n$ of all test cases does not exceed $10^{6}$.

## Output

For each test case, if there does not exist a perfect matching output "No" (without quotes) in one line; If there exists a perfect matching first output "Yes" (without quotes) in one line, then output $\frac{n}{2}$ lines where the $i$-th line contains two integers $u_{i}$ and $v_{i}$ separated by a space indicating the two vertices connected by the $i$-th edge in the perfect matching. If there are multiple valid answers, output any.

## Example

| standard input | standard output |
| :---: | :---: |
| 3 | Yes |
| 6 | 14 |
| 142233112536 | 52 |
| 4 | 63 |
| 100109812 | Yes |
| 4 | 13 |
| 1357 | 42 |
|  | No |

