Problem K. NaN in a Heap

Prerequisite: NaN

NaN (Not a Number) is a special floating-point value introduced by the IEEE 754 floating-point standard in 1985. The standard speficies that, when NaN is compared with a floating-point value x (x can be positive, zero, negative, or even NaN itself), the following results should be returned.

Comparison	$\mathrm{NaN} \geq \mathrm{x}$	$\mathrm{NaN} \leq \mathrm{x}$	$\mathrm{NaN}>\mathrm{x}$	$\mathrm{NaN}<\mathrm{x}$	NaN $=\mathrm{x}$	NaN $\neq \mathrm{x}$
Result	False	False	False	False	False	True

Prerequisite: Heap

A heap is a data structure which can be represented by a sequence with special properties. The following algorithm demonstrates how to insert n floating-point values $a_{1}, a_{2}, \cdots, a_{n}$ into a min-heap H in order, where H is a sequence and is initially empty.

In the following algorithm, let h_{i} be the i-th element in sequence H, and let $j / 2$ be the maximum integer x satisfying $2 x \leq j$.

```
Algorithm 1 Heapify
    function \(\operatorname{Heapify}(A)\)
        Let \(H\) be an empty sequence.
        for \(i \leftarrow 1\) to \(n\) do \(\quad \triangleright n\) is the number of elements to be inserted into heap.
            Append \(a_{i}\) to the back of \(H\).
            \(j:=i\)
            while \(j>1\) do
                if \(h_{j}<h_{j / 2}\) then \(\quad \triangleright\) Recall that if \(h_{j}\) or \(h_{j / 2}\) is NaN, this expression will be false.
                    Swap \(h_{j}\) and \(h_{j / 2}\).
                    \(j:=j / 2\)
            else
                break
            end if
            end while
        end for
        return \(H\)
    end function
```


Problem

Given an integer n, consider permutations of these n elements: all integers from 1 to ($n-1$) (both inclusive), as well as a NaN value. We say a permutation P of these n elements is a "heap sequence", if there exists a permutation Q also of these n elements satisfying $P=\operatorname{HEAPIFY}(Q)$.
We now randomly pick a permutation of these n elements with equal probability (that is, the probability of a specific permutation to be picked is $\frac{1}{n!}$), calculate the probability that the picked permutation is a heap sequence.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{3}\right)$ indicating the number of test cases. For each test case:
The first and only line contains an integer $n\left(1 \leq n \leq 10^{9}\right)$.

Output

For each test case output one line containing the answer.
It can be proven that the answer is a rational number $\frac{p}{q}$. To avoid issues related to precisions, please output the integer $\left(p q^{-1} \bmod M\right)$ as the answer, where $M=10^{9}+7$ and q^{-1} is the integer satisfying $q q^{-1} \equiv 1(\bmod M)$.

Example

	standard input	standard output
5	1	
1	666666672	
3	55555556	
7	596445110	
10	3197361	
20221218		

Note

For the second sample test case, there are 4 heap sequences.

- $\{\operatorname{NaN}, 1,2\}=\operatorname{HEAPIFY}(\{\operatorname{NaN}, 1,2\})$.
- $\{\operatorname{NaN}, 2,1\}=\operatorname{HEAPIFY}(\{\mathrm{NaN}, 2,1\})$.
- $\{1, \operatorname{NaN}, 2\}=\operatorname{HEAPIFY}(\{1, \operatorname{NaN}, 2\})=\operatorname{HEAPIFY}(\{2, \operatorname{NaN}, 1\})$.
- $\{1,2, \operatorname{NaN}\}=\operatorname{HEAPIFY}(\{1,2, \operatorname{NaN}\})=\operatorname{HEAPIFY}(\{2,1, \operatorname{NaN}\})$.

So the answer is $\frac{4}{3!}=\frac{2}{3}$ in rational number. As $3 \times 333333336 \equiv 1(\bmod M)$, we should output $2 \times 333333336 \bmod M=666666672$.

