Problem K. NaN in a Heap

Prerequisite: NaN

NaN (Not a Number) is a special floating-point value introduced by the IEEE 754 floating-point standard in 1985. The standard species that, when NaN is compared with a floating-point value x (x can be positive, zero, negative, or even NaN itself), the following results should be returned.

Comparison	$\texttt{NaN} \ge \texttt{x}$	$\texttt{NaN} \leq \texttt{x}$	NaN > x	NaN < x	NaN = x	$\mathtt{NaN} \neq \mathtt{x}$
Result	False	False	False	False	False	True

Prerequisite: Heap

A heap is a data structure which can be represented by a sequence with special properties. The following algorithm demonstrates how to insert n floating-point values a_1, a_2, \dots, a_n into a min-heap H in order, where H is a sequence and is initially empty.

In the following algorithm, let h_i be the *i*-th element in sequence H, and let j/2 be the maximum integer x satisfying $2x \leq j$.

Alg	prithm 1 Heapify
1: 1	
2:	Let H be an empty sequence.
3:	for $i \leftarrow 1$ to n do $\triangleright n$ is the number of elements to be inserted into heap.
4:	Append a_i to the back of H .
5:	j:=i
6:	while $j > 1$ do
7:	if $h_j < h_{j/2}$ then \triangleright Recall that if h_j or $h_{j/2}$ is NaN, this expression will be false.
8:	Swap h_j and $h_{j/2}$.
9:	j:=j/2
10:	else
11:	break
12:	end if
13:	end while
14:	end for
15:	$\mathbf{return}\ H$
16: •	end function

Problem

Given an integer n, consider permutations of these n elements: all integers from 1 to (n - 1) (both inclusive), as well as a NaN value. We say a permutation P of these n elements is a "heap sequence", if there exists a permutation Q also of these n elements satisfying P = HEAPIFY(Q).

We now randomly pick a permutation of these n elements with equal probability (that is, the probability of a specific permutation to be picked is $\frac{1}{n!}$), calculate the probability that the picked permutation is a heap sequence.

Input

There are multiple test cases. The first line of the input contains an integer T $(1 \le T \le 10^3)$ indicating the number of test cases. For each test case:

The first and only line contains an integer $n \ (1 \le n \le 10^9)$.

Output

For each test case output one line containing the answer.

It can be proven that the answer is a rational number $\frac{p}{q}$. To avoid issues related to precisions, please output the integer $(pq^{-1} \mod M)$ as the answer, where $M = 10^9 + 7$ and q^{-1} is the integer satisfying $qq^{-1} \equiv 1 \pmod{M}$.

Example

standard output		
1		
66666672		
5555556		
596445110		
3197361		

Note

For the second sample test case, there are 4 heap sequences.

- $\{\operatorname{NaN}, 1, 2\} = \operatorname{HEAPIFY}(\{\operatorname{NaN}, 1, 2\}).$
- $\{\operatorname{NaN}, 2, 1\} = \operatorname{HEAPIFY}(\{\operatorname{NaN}, 2, 1\}).$
- $\{1, \mathtt{NaN}, 2\} = \mathtt{HEAPIFY}(\{1, \mathtt{NaN}, 2\}) = \mathtt{HEAPIFY}(\{2, \mathtt{NaN}, 1\}).$
- $\{1, 2, \mathtt{NaN}\} = \mathtt{HEAPIFY}(\{1, 2, \mathtt{NaN}\}) = \mathtt{HEAPIFY}(\{2, 1, \mathtt{NaN}\}).$

So the answer is $\frac{4}{3!} = \frac{2}{3}$ in rational number. As $3 \times 333333336 \equiv 1 \pmod{M}$, we should output $2 \times 333333336 \mod M = 666666672$.