Problem L. Proposition Composition

These is an undirected connected graph G with n vertices and $(n-1)$ edges. The vertices are numbered from 1 to n (both inclusive) and the i-th edge connects vertices i and $(i+1)$.
There will be m extra edges added to this graph. Each addition is permanent. After each edge is added, output the number of ways to choose two edges e and f from the graph such that if both edges e and f are removed from the graph, the graph will become disconnected (that is, the graph will have at least two connected components).
Note that first choosing e then choosing f is considered the same way as first choosing f then choosing e.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n, m \leq 2.5 \times 10^{5}\right)$ indicating the size of the graph and the number of extra edges.
For the following m lines, the i-th line contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$ indicating the i-th extra edge connects vertices u_{i} and v_{i}.
It's guaranteed that neither the sum of n nor the sum of m over all test cases will exceed 2.5×10^{5}.

Output

For each test case output m lines where the i-th line contains the answer after the i-th extra edge is added.

Example

	standard input		standard output
3	6		
4	3	5	
2	4	6	
4	2	21	
3	3	24	
7	3	10	
3	4	15	
1	2	12	
1	7	3	
6	4	2	
1	3		
4	6	5	
2	4		

Note

We explain the first sample test case as follows.
After adding the first extra edge, removing any two edges will make the graph disconnected. So the answer is 6 .
After adding the second extra edge, we can choose original edge 1 and any other edge, or choose original edge 2 and original edge 3 . The answer is $4+1=5$.
After adding the third extra edge, we can choose original edge 1 and any other edge, or choose original edge 2 and original edge 3 . The answer is $5+1=6$.

