Problem L. 命题作文

有一张由 n 个点与 (n-1) 条边构成的无向连通图 G。顶点编号从 1 到 n (含两端),第 i 条边连接顶点 i 与 (i+1)。

接下来向图中依次加入额外 m 条边(加入后不删除)。每次加入一条额外边后,求从图中选择两条边 e 与 f 的方案数,满足如果边 e 与 f 同时被删除,图将变得不连通(即图中至少有两个连通块)。

请注意, 先选择 e 再选择 f, 和先选择 f 再选择 e 被认为是同一种方案。

Input

有多组测试数据。第一行输入一个整数 T 表示数据组数,对于每组测试数据:

第一行输入两个整数 n 和 m $(1 < n, m < 2.5 \times 10^5)$ 表示图的点数及增加的额外边数。

对于接下来 m 行,第 i 行输入两个整数 u_i 和 v_i $(1 \le u_i, v_i \le n)$ 表示第 i 条额外边连接顶点 u_i 与 v_i 。 保证所有数据中 n 之和与 m 之和均不超过 2.5×10^5 。

Output

每组数据输出 m 行, 第 i 行输出一个整数表示加入第 i 条额外边后的答案。

Example

standard input	standard output
3	6
4 3	5
2 4	6
4 2	21
3 3	24
7 3	10
3 4	15
1 2	12
1 7	3
6 4	2
1 3	
4 6	
2 5	
3 4	

Note

以下对第一组样例数据进行解释。

加入第一条额外边后,任意删除两条边都能将图变得不连通。因此答案为 6。

加入第二条额外边后,可以同时选择原始边 1 与任意另一条边,也可以同时选择原始边 2 与原始边 3。答案为 4+1=5。

加入第三条额外边后,可以同时选择原始边 1 与任意另一条边,也可以同时选择原始边 2 与原始边 3。答案为 5+1=6。