Problem D. Shortest Path Query

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You will be given a directed acyclic graph with n vertices, labeled by 1, 2, ..., n. There are m edges in the graph, each edge is either black or white. It is guaranteed that you can reach every vertex from the 1-st vertex.

You will be given q queries. In the *i*-th query, you will be given three integers a_i , b_i and x_i . You need to report the length of the shortest path from the 1-st vertex to the x_i -th vertex if we regard the length of each black edge as a_i and regard the length of each white edge as b_i .

Input

The first line of the input contains two integers n and m $(1 \le n \le 50\,000, 1 \le m \le 100\,000)$, denoting the number of vertices and the number of directed edges.

In the next *m* lines, the *i*-th line contains three integers u_i, v_i and c_i $(1 \le u_i < v_i \le n, v_i - u_i \le 1000, 0 \le c_i \le 1)$, describing a directed edge from the u_i -th vertex to the v_i -th vertex. When $c_i = 0$, its color is black, and when $c_i = 1$, its color is white.

The next line contains a single integer q ($1 \le q \le 50\,000$), denoting the number of queries.

Each of the next q lines contains three integers a_i , b_i and x_i $(1 \le a_i, b_i \le 10\,000, 1 \le x_i \le n)$, denoting a query.

It is guaranteed that you can reach every vertex from the 1-st vertex.

Output

For each query, print a single line containing an integer, denoting the length of the shortest path.

Example

standard input	standard output
4 4	3
1 2 0	4
1 3 1	4
2 4 0	
3 4 1	
3	
3 5 2	
324	
234	