Problem D. Shortest Path Query

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

You will be given a directed acyclic graph with n vertices, labeled by $1,2, \ldots, n$. There are m edges in the graph, each edge is either black or white. It is guaranteed that you can reach every vertex from the 1 -st vertex.

You will be given q queries. In the i-th query, you will be given three integers a_{i}, b_{i} and x_{i}. You need to report the length of the shortest path from the 1 -st vertex to the x_{i}-th vertex if we regard the length of each black edge as a_{i} and regard the length of each white edge as b_{i}.

Input

The first line of the input contains two integers n and $m(1 \leq n \leq 50000,1 \leq m \leq 100000)$, denoting the number of vertices and the number of directed edges.
In the next m lines, the i-th line contains three integers u_{i}, v_{i} and $c_{i}\left(1 \leq u_{i}<v_{i} \leq n, v_{i}-u_{i} \leq 1000\right.$, $0 \leq c_{i} \leq 1$), describing a directed edge from the u_{i}-th vertex to the v_{i}-th vertex. When $c_{i}=0$, its color is black, and when $c_{i}=1$, its color is white.
The next line contains a single integer $q(1 \leq q \leq 50000)$, denoting the number of queries.
Each of the next q lines contains three integers a_{i}, b_{i} and $x_{i}\left(1 \leq a_{i}, b_{i} \leq 10000,1 \leq x_{i} \leq n\right)$, denoting a query.
It is guaranteed that you can reach every vertex from the 1-st vertex.

Output

For each query, print a single line containing an integer, denoting the length of the shortest path.

Example

	standard input		standard output	
4	4		3	
1	2	0	4	
1	3	1	4	
2	4	0		
3	4	1		
3				
3	5	2		
3	2	4		
2	3	4		

