Problem I. Range Closest Pair of Points Query

Input file:	standard input
Output file:	standard output
Time limit:	9 seconds
Memory limit:	1024 megabytes

The closest pair of points problem is a well-known problem of computational geometry. In this problem, there are n points p_1, p_2, \ldots, p_n in the Euclidean plane. You will be given q queries. In the *i*-th query, you will be given two integers l_i and r_i $(1 \le l_i < r_i \le n)$. You need to find a pair of points (u, v) such that $l_i \le u < v \le r_i$ and the Euclidean distance $\sqrt{(x_u - x_v)^2 + (y_u - y_v)^2}$ between point p_u and p_v is minimized.

Input

The first line of the input contains two integers n and q $(2 \le n \le 250\,000, 1 \le q \le 250\,000)$, denoting the number of points and the number of queries.

In the next n lines, the *i*-th line contains two integers x_i and y_i $(1 \le x_i, y_i \le 10^8)$, describing the coordinate of p_i .

Each of the next q lines contains two integers l_i and r_i $(1 \le l_i < r_i \le n)$, denoting a query.

Output

For each query, print a single line containing an integer, denoting the value of $(x_u - x_v)^2 + (y_u - y_v)^2$.

Examples

standard input	standard output
5 5	2
2 4	8
1 1	8
3 3	2
5 1	2
4 2	
15	
2 3	
2 4	
3 5	
1 3	
2 1	0
1 1	
1 1	
1 2	