Problem L. Permutation Compression

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Grammy has a permutation of length n. She wants to delete some useless elements in the permutation, so she decided to use some magic tool to delete them. There are k magic tools, the *i*-th of them can delete the maximum element of an interval of length exactly l_i . Each magic tool can be used at most once.

Before using the tool, Grammy shows you her blueprint of the array after deletion. The new array consists of exactly m distinct elements from 1 to n. Please help Grammy to determine whether it is possible to delete the elements by using the magic tool.

Input

There are multiple test cases. The first line contains an integer T $(1 \le T \le 10^5)$, denoting the number of test cases.

For each testcase:

The first line contains 3 integers n, m, k $(1 \le m \le n \le 2 \times 10^5, 1 \le k \le 2 \times 10^5)$, denoting the length of the permutation, the length of the compressed array, and the parameter of the magic tool.

The second line contains n distinct integers a_i $(1 \le a_i \le n)$, denoting the initial permutation. It is guaranteed that the elements are distinct.

The third line contains m distinct integers b_i $(1 \le b_i \le n)$, denoting the array after compression. It is guaranteed that the elements are distinct.

The fourth line contains k integers l_i $(1 \le l_i \le n)$, denoting the magic tools.

It is guaranteed that $\sum n \le 2 \times 10^5$ and $\sum k \le 2 \times 10^5$.

Output

For each testcase, output "YES" or "NO" in a separate line, denoting the answer to the problem.

Example

standard input	standard output
3	YES
523	YES
5 1 3 2 4	NO
5 2	
124	
5 5 5	
1 2 3 4 5	
1 2 3 4 5	
1 2 3 4 5	
3 2 2	
3 1 2	
3 2	
2 3	