Problem A. Adjacent Product Sum

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

You have n numbers $a_{1}, a_{2}, \ldots, a_{n}$. You want to arrange them in a circle so as to maximize the sum of products of pairs of adjacent numbers.
Formally, you want to find a permutation $b_{1}, b_{2}, \ldots, b_{n}$ of $a_{1}, a_{2}, \ldots, a_{n}$ such that $b_{1} b_{2}+b_{2} b_{3}+\ldots+b_{n-1} b_{n}+b_{n} b_{1}$ is maximal.
Find this maximum value.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. The description of test cases follows.
The first line of each test case contains a single integer $n\left(3 \leq n \leq 2 \cdot 10^{5}\right)$ - the number of numbers.
The second line of each test case contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(-10^{6} \leq a_{i} \leq 10^{6}\right)$.
It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, print a single integer - the maximum possible value of the expression $b_{1} b_{2}+b_{2} b_{3}+\ldots+b_{n-1} b_{n}+b_{n} b_{1}$ over all permutations $b_{1}, b_{2}, \ldots, b_{n}$ of $a_{1}, a_{2}, \ldots, a_{n}$.

Example

standard input	standard output
4	11
3	3
123	10000000000
6	48
111100	
5	
$100000100000100000100000-100000$	
5	
12345	

Note

In the first test case, there is only one way to arrange the numbers in a circle (not counting rotations and symmetries $)-(1,2,3)$. The sum of products of pairs of adjacent numbers is $1 \cdot 2+2 \cdot 3+3 \cdot 1=11$.
In the second test case, one of the optimal arrangements is $(1,1,1,1,0,0)$. For it this sum is equal to $1 \cdot 1+1 \cdot 1+1 \cdot 1+1 \cdot 0+0 \cdot 0+0 \cdot 1=3$.
In the third test case, there is a unique (up to rotations and symmetries) way to arrange the numbers in a circle: $(100000,100000,100000,100000,-100000)$, the answer is $100000^{2}=10^{10}$. Note that the answer may not fit into int32.
In the fourth test case, one of the optimal permutations is $(1,2,4,5,3)$, the answer for which is $1 \cdot 2+2 \cdot 4+4 \cdot 5+5 \cdot 3+3 \cdot 1=2+8+20+15+3=48$.

