Problem D. Distance Parities

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Andrii had a connected graph with n vertices. For every two different vertices i and j of this graph, he calculated the length of the shortest path between them $-d_{i, j}$. Unfortunately, then Andrii lost the graph and forgot the numbers $d_{i, j}$. But he remembered the parity of all numbers $d_{i, j}$.
So for every two different vertices i, j Andrii told you $a_{i, j}=d_{i, j} \bmod 2$. Construct an example of a graph that Andrii could have had, or determine that such a graph does not exist and Andrii is lying to you.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. The description of test cases follows.
The first line of each test case contains one integer $n(2 \leq n \leq 500)$ - the number of vertices.
The i-th of the next n lines contains a binary string s_{i} of length n. The j-th character of this string is 0 if $a_{i, j}=0$, and 1 if $a_{i, j}=1$.
It is guaranteed that $a_{i, i}=0$ for all $1 \leq i \leq n$, and $a_{i, j}=a_{j, i}$ for all $1 \leq i<j \leq n$.
It is guaranteed that the sum of n^{2} over all test cases does not exceed 250000 .

Output

For each test case, if such a graph does not exist, print NO.
Otherwise, print YES. On the next line print a single integer $m\left(n-1 \leq m \leq \frac{n(n-1)}{2}\right)$ - the number of edges. In the i-th of the next m lines print two numbers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$, denoting the edge between the vertices u_{i} and v_{i}.
All edges must be pairwise distinct. The graph must be connected.
You can print YES and NO in any case (e.g. the strings yEs, yes, Yes will be taken as a positive answer).

Example

	standard input	standard output
3	YES	
3	3	
011	12	
101	123	
4	2	3
0100	NO	
1000	YES	
0001	4	
0010	12	
5	2	3
01010	3	4
10101	4	5
10101		
01010		

Note

In the first test case, such a graph on three vertices exists - you can just take a triangle. All pairwise distances are equal to 1 and hence odd.

It can be shown that in the second test case, such a graph does not exist.
In the third test case, we have a chain with edges $(1,2),(2,3),(3,4),(4,5)$. In it, the distance between vertices i, j is odd if and only if i and j have different parity.

