

Problem D. Distance Parities

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Andrii had a connected graph with n vertices. For every two different vertices i and j of this graph, he calculated the length of the shortest path between them $-d_{i,j}$. Unfortunately, then Andrii lost the graph and forgot the numbers $d_{i,j}$. But he remembered the parity of all numbers $d_{i,j}$.

So for every two different vertices i, j Andrii told you $a_{i,j} = d_{i,j} \mod 2$. Construct an example of a graph that Andrii could have had, or determine that such a graph does not exist and Andrii is lying to you.

Input

The first line contains a single integer t $(1 \le t \le 10^4)$ — the number of test cases. The description of test cases follows.

The first line of each test case contains one integer $n \ (2 \le n \le 500)$ — the number of vertices.

The *i*-th of the next *n* lines contains a binary string s_i of length *n*. The *j*-th character of this string is 0 if $a_{i,j} = 0$, and 1 if $a_{i,j} = 1$.

It is guaranteed that $a_{i,i} = 0$ for all $1 \le i \le n$, and $a_{i,j} = a_{j,i}$ for all $1 \le i < j \le n$.

It is guaranteed that the sum of n^2 over all test cases does not exceed 250000.

Output

For each test case, if such a graph does not exist, print NO.

Otherwise, print YES. On the next line print a single integer m $(n-1 \le m \le \frac{n(n-1)}{2})$ — the number of edges. In the *i*-th of the next m lines print two numbers u_i, v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$, denoting the edge between the vertices u_i and v_i .

All edges must be pairwise distinct. The graph must be connected.

You can print YES and NO in any case (e.g. the strings yEs, yes, Yes will be taken as a positive answer).

standard input	standard output
3	YES
3	3
011	1 2
101	1 3
110	2 3
4	NO
0100	YES
1000	4
0001	1 2
0010	2 3
5	3 4
01010	4 5
10101	
01010	
10101	
01010	

Example

Note

In the first test case, such a graph on three vertices exists - you can just take a triangle. All pairwise distances are equal to 1 and hence odd.

It can be shown that in the second test case, such a graph does not exist.

In the third test case, we have a chain with edges (1,2), (2,3), (3,4), (4,5). In it, the distance between vertices i, j is odd if and only if i and j have different parity.