Problem E. Excellent XOR Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

For an array $\left[b_{1}, b_{2}, \ldots, b_{k}\right]$ of integers, let's define its weight as the \oplus of all its elements.
Here \oplus denotes the bitwise exclusive OR operation. For example, $13 \oplus 6=11$, because in binary, $13=1101$ and $6=0110$, so their \oplus is $1011=11$. The weight of array $[13,1,4]$, for example, is 8 .
You are given an array $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ of integers. We want to divide it into several (more than one) consecutive subarrays whose weights are distinct. Determine if this is possible. If it is possible, find one of such partitions.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer $n\left(2 \leq n \leq 2 \cdot 10^{5}\right)$ - the length of the array.
The second line of each test case contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<2^{30}\right)$ - the elements of the array.
It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, if no such partitioning exists, print NO.
Otherwise, print YES. On the following line, print a single integer $k(2 \leq k \leq n)$ - the number of subarrays into which you are splitting a.
On the i-th of the next k lines print two numbers $l_{i}, r_{i}\left(1 \leq l_{i} \leq r_{i} \leq n\right)$, denoting that the i-th of your arrays is $\left[a_{l_{i}}, a_{l_{i}+1}, \ldots, a_{r_{i}}\right]$. You can print these subarrays in any order, but each number from 1 to n must appear in exactly one of the segments $\left[l_{i}, r_{i}\right]$.
You can print YES and NO in any case (e.g. the strings yEs, yes, Yes will be taken as a positive answer).

Example

standard input	standard output
4	NO
2	YES
00	3
3	11
123	22
5	33
168421	YES
6	2
424242424242	11
	25
	NO

Note

In the first test case, there is no way to split $[0,0]$ into at least two subarrays with distinct $\oplus \mathrm{s}$.
In the second test case, you can split array $[1,2,3]$ into 3 subarrays $[1],[2],[3]$ correspondingly, with $\oplus \mathrm{s}$ $1,2,3$ correspondingly.

