Problem G. Graph Problem With Small n

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

You are given an undirected graph with n vertices. For each pair of vertices $(i, j)(i \neq j)$, determine whether there exists a Hamiltonian path starting at i and ending at j.
Recall that a Hamiltonian path is a path consisting of $n-1$ edges that passes through all vertices exactly once.

Input

The first line contains one integer $n(2 \leq n \leq 24)$ - the number of vertices in the graph.
The i-th of the next n lines contains a binary string s_{i} of length n. Its i-th character is always equal to 0 , and for $j \neq i$ its j-th character is equal to 1 if there is an edge between vertices i and j, and 0 otherwise. It is guaranteed that for any $i \neq j$, the i-th character of the j-th line coincides with the j-th character of the i-th line.

Output

Print n lines. In i-th of them, print a binary string of length n. Its i-th character must be equal to 0 , and j-th character at $j \neq i$ must be equal to 1 if there is a Hamiltonian path between vertices i and j, and 0 otherwise.

Examples

	standard input
4	0001
0110	0001
1010	0000
1101	1100
0010	
6	010001
010001	101000
101000	010100
010100	001010
001010	000101
100010	100010
0111	0111
1011	1011
1110	1101

Note

In the first example, the Hamiltonian path exists between pairs $(1,4)$ and $(2,4)$.
In the second example, the graph is a cycle of length 6 . The Hamiltonian path here exists only between pairs of adjacent vertices.
In the third example, we have a complete graph with 4 vertices. There exists a Hamiltonian path between each pair of vertices.

