

Problem G. Graph Problem With Small n

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You are given an undirected graph with n vertices. For each pair of vertices (i, j) $(i \neq j)$, determine whether there exists a Hamiltonian path starting at i and ending at j.

Recall that a Hamiltonian path is a path consisting of n-1 edges that passes through all vertices exactly once.

Input

The first line contains one integer $n \ (2 \le n \le 24)$ — the number of vertices in the graph.

The *i*-th of the next *n* lines contains a binary string s_i of length *n*. Its *i*-th character is always equal to 0, and for $j \neq i$ its *j*-th character is equal to 1 if there is an edge between vertices *i* and *j*, and 0 otherwise.

It is guaranteed that for any $i \neq j$, the *i*-th character of the *j*-th line coincides with the *j*-th character of the *i*-th line.

Output

Print *n* lines. In *i*-th of them, print a binary string of length *n*. Its *i*-th character must be equal to 0, and *j*-th character at $j \neq i$ must be equal to 1 if there is a Hamiltonian path between vertices *i* and *j*, and 0 otherwise.

Examples

standard input	standard output
4	0001
0110	0001
1010	0000
1101	1100
0010	
6	010001
010001	101000
101000	010100
010100	001010
001010	000101
000101	100010
100010	
4	0111
0111	1011
1011	1101
1101	1110
1110	

Note

In the first example, the Hamiltonian path exists between pairs (1, 4) and (2, 4).

In the second example, the graph is a cycle of length 6. The Hamiltonian path here exists only between pairs of adjacent vertices.

In the third example, we have a complete graph with 4 vertices. There exists a Hamiltonian path between each pair of vertices.