Problem J. Jewel of Data Structure Problems

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

The array $a_{1}, a_{2}, \ldots, a_{m}$ of integers is called odd if it has an odd number of inversions, and even otherwise. Recall that an inversion is a pair (i, j) with $1 \leq i<j \leq m$ such that $a_{i}>a_{j}$. For example, in the array $[2,4,1,3]$ there are 3 inversions: $(1,3),(2,3),(2,4)$ (since $\left.a_{1}>a_{3}, a_{2}>a_{3}, a_{2}>a_{4}\right)$, so it is odd.
Given a permutation $p_{1}, p_{2}, \ldots, p_{n}$ of integers from 1 to n, we call its beauty the length of its longest odd subsequence, if it exists, otherwise -1 . For example, the beauty of the permutation $(1,2,3)$ is -1 , because each of its subsequences is even, the beauty of $(4,1,2,3)$ is 4 , because the whole permutation is odd, and the beauty of $(4,1,3,2)$ is 3 , because the whole permutation is even, and the subsequence $(4,3,2)$ is odd.
We are given an initial permutation $p_{1}, p_{2}, \ldots, p_{n}$. There will be q update requests to it. After the i-th request we will have to swap $p_{u_{i}}$ and $p_{v_{i}}$.
Find the beauty of the permutation after each request.
Recall that an array b is a subsequence of c if b can be obtained from c by removing some (possibly none or all) elements.
Recall that a permutation of the numbers from 1 to n is an array of length n containing each number from 1 to n exactly once.

Input

The first line contains two integers $n, q\left(1 \leq n, q \leq 2 \cdot 10^{5}\right)$ - the permutation length and the number of queries, respectively.
The next line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right.$, all p_{i} are pairwise distinct $)$ - the initial permutation p.
The i-th of the following q lines contains two integers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$, indicating that after the i-th query you have to swap $p_{u_{i}}$ and $p_{v_{i}}$.

Output

Print q integers - the permutation beauty after each update request.

Example

		standard input		standard output	
5	6		-1		
2	1	3	4	5	5
1	2		4		
1	2			5	
1	4			3	
2	1			5	
3	5				
1	3				

Note

- After the first query, the permutation is $(1,2,3,4,5)$. There is no odd subsequence in it.
- After the second query, the permutation is $(2,1,3,4,5)$. The whole permutation is odd, because it has exactly one inversion.
- After the third query, the permutation is $(4,1,3,2,5)$. The whole permutation is even, but its subsequence $(4,3,2,5)$ is odd.
- After the fourth query, the permutation is $(1,4,3,2,5)$. The entire permutation is odd.
- After the fifth query, the permutation is $(1,4,5,2,3)$. The entire permutation is even, and all its subsequences of length 4 are even, but the subsequence $(1,5,2)$ is odd.
- After the sixth query, the permutation is $(5,4,1,2,3)$. The entire permutation is odd.

