Problem L. Least Annoying Constructive Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Consider a complete graph on n nodes. You have to arrange all its $\frac{n(n-1)}{2}$ edges on the circle in such a way that every $n-1$ consecutive edges on this circle form a tree.

It can be proved that such an arrangement is possible for every n. If there are many such arrangements, you can find any of them.
As a reminder, a tree on n nodes is a connected graph with $n-1$ edges.

Input

The only line of the input contains a single integer $n(3 \leq n \leq 500)$.

Output

Output $\frac{n(n-1)}{2}$ lines. The i-th line should contain two integers $u_{i}, v_{i}\left(1 \leq u_{i}<v_{i} \leq n\right)$. All pairs (u_{i}, v_{i}) have to be distinct, and for every i from 1 to $\frac{n(n-1)}{2}$, edges $\left(u_{i}, v_{i}\right),\left(u_{i+1}, v_{i+1}\right), \ldots,\left(u_{i+n-2}, v_{i+n-2}\right)$ have to form a tree.

Here $u_{\frac{n(n-1)}{2}+i}=u_{i}, v_{\frac{n(n-1)}{2}+i}=v_{i}$ for every i.

Examples

standard input		standard output
3	1	2
	2	3
	1	3
4	1	2
	3	4
	2	3
	1	4
	1	3
	2	4

