Problem M. Most Annoying Constructive Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

The array $a_{1}, a_{2}, \ldots, a_{m}$ of integers is called odd if it has an odd number of inversions, and even otherwise. Recall that an inversion is a pair (i, j) with $1 \leq i<j \leq m$ such that $a_{i}>a_{j}$. For example, in the array $[2,4,1,3]$, there are 3 inversions: $(1,3),(2,3),(2,4)$ (since $\left.a_{1}>a_{3}, a_{2}>a_{3}, a_{2}>a_{4}\right)$, so it is odd.
Given n, k, determine if there exists a permutation of integers from 1 to n, which has exactly k odd subarrays.

An array b is a subarray of an array c if b can be obtained from c by the deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. The description of the test cases follows.
The only line of each test case contains two integers $n, k\left(1 \leq n \leq 1000,0 \leq k \leq \frac{n(n-1)}{2}\right)$.
It's guaranteed that the sum of n^{2} over all test cases doesn't exceed $4 \cdot 10^{6}$.

Output

For every test case, if there is no such permutation, output NO.
Otherwise, output YES. In the next line, output n integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right.$, all p_{i} are distinct) - the elements of your permutation.

Example

	standard input		standard output	
4		YES		
1	0	1		
3	3	1	YES	
6	15	3	2	1
	YES			
		1	3	4
		2		
		NO		

Note

In the first test case, the permutation is (1); all its subarrays are even.
In the second test case, the permutation is $(3,2,1)$. It has 3 odd subarrays: $[3,2],[2,1]$ with 1 inversion each, and $[3,2,1]$ with 3 inversions.
In the third test case, the permutation is ($1,3,4,2$). It has exactly 1 odd subarrays: [4, 2] with 1 inversion. It can be shown that no such permutation exists for the fourth test case.

