Problem N. No Zero-Sum Subsegment

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

You are given integers A, B, C, D. Count the number of arrays of length $A+B+C+D$, such that:

- They contain exactly A elements equal to -2 , exactly B elements equal to -1 , exactly C elements equal to 1 , exactly D elements equal to 2
- They contain no subarray with sum equal to 0 .

As this number can be very large, output it modulo 998244353.
An array b is a subarray of an array c if b can be obtained from c by the deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.

Input

The first line of the input contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. The description of test cases follows.
The only line of each test case contains 4 integers $A, B, C, D\left(0 \leq A, B, C, D \leq 10^{6}, A+B+C+D>0\right)$.

Output

Output a single integer - answer to the problem.

Example

	standard input		standard output	
5			1	
69	0	0	0	
1	1	1	1	
0	0	3	3	
6	1	0	6	
10000	10000	1000000	1000000	2

Note

In the first test case, there exists only one such array: an array consisting of $69-2 \mathrm{~s}$.
In the second test case, the sum of all its elements is $(-2)+(-1)+1+2=0$, so there are no such arrays.

