Problem J Sharing Bread

There are N toasters, numbered from 1 to N, from left to right. Initially, each toaster has a single piece of bread in it. There are M people, numbered from 1 to M, who are one by one looking for bread among the toasters, starting from person 1, person 2 , and so on.

Person i starts looking from toaster $a_{i}\left(1 \leq a_{i} \leq N\right)$ and keeps going right until they found a toaster with a piece of bread in it. In other words, person i is looking for the smallest j such that $a_{i} \leq j \leq N$ and toaster j contains bread. If such a toaster exists, then person i will take the bread from that toaster and leave; the toaster becomes empty afterward. If such a toaster does not exist, then person i will leave empty-handed.

A starting sequence $\left(a_{1}, a_{2}, \cdots, a_{M}\right)$ is fair if person i starts looking from toaster a_{i} and does not leave empty-handed, for all $1 \leq i \leq M$. Out of all N^{M} possible starting sequences, determine how many of them are fair modulo 998244353 .

Input

Input consists of two integers $N M(1 \leq M \leq N \leq 200000)$ in a single line representing the number of toasters and the number of people, respectively.

Output

Output an integer in a single line representing the number of fair starting sequence modulo 998244353.

Sample Input \#1

```
4 3
```


Sample Output \#1

50

Explanation for the sample input/output \#1

One of the possible fair starting sequences is $(4,2,2)$. First, person 1 starts looking from toaster 4 and takes the bread from toaster 4. Then, person 2 starts looking from toaster 2 and takes the bread from toaster 2. Finally, person 3 will start looking from toaster 2, which is currently empty. Person 3 moves to toaster 3 and takes the bread from toaster 3 . Since each person gets a piece of bread, the starting sequence $(4,2,2)$ is fair.

Another example of fair starting sequences are $(1,1,1),(1,1,2),(2,3,4)$, and $(2,2,2)$. Some of the possible starting sequences that are not fair are $(3,3,3),(3,4,3),(4,4,1)$, and $(4,4,4)$.

Sample Input \#2

```
10 1
```


Sample Output \#2

```
1 0
```

Explanation for the sample input/output \#2
All starting sequences are fair.

Sample Input \#3

```
2
```


Sample Output \#3

```
3
```


Explanation for the sample input/output \#3

The only starting sequence that is not fair is $(2,2)$. Person 1 starts looking from toaster 2 and takes the bread from toaster 2 . Then, person 2 starts looking from toaster 2 , which is currently empty. Since there is no more toaster to the right of toaster 2 , person 2 will leave empty-handed.

