Problem B. Balanced Permutations

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	256 megabytes

Given a permutation p of size n, let a (contiguous) subarray of p be 'unstable' if the maximum value contained within the subarray is its first or last element. A permutation is considered 'balanced' if it has the minimum number of 'unstable' subarrays over all permutations of size n.

Given integers n, l, and k, report the l-th lexicographically-minimum 'balanced' permutation and the k-th lexicographically-maximum 'balanced' permutation of size n. If no such permutation exists output -1 instead.

Input

The only line of input contains three integers n, l, and $k\left(1 \leq n \leq 10^{5}, 1 \leq l, k \leq 10^{18}\right)$ - the length of the desired permutation and the indices of which lex-min and lex-max permutation should be provided.

Output

Output two lines. The first line should contain the l-th lexicographically-minimum 'balanced' permutation of size $n-\operatorname{denoted} p$.
The second line should contain the k-th lexicographically-maximum 'balanced' permutation of size $n-$ denoted q.
p and q should satisfy $1 \leq p_{i}, q_{i} \leq n$ for all $1 \leq i \leq n$.
If p or q does not exist (ie. there do not exist l or k 'balanced' permutations of size n) then report an answer of -1 instead.

Examples

	standard input			standard output	
3	1	2	1	3	2
1	3	2			
4	9	13	3 1 4 2 -1		

