Problem C. Cyclic Shifts

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 megabytes

We are given a permutation p of the integers 1 to n.
In a given operation we can choose $k>0$ indices $1 \leq x_{1}<x_{2}<\cdots<x_{k} \leq n$ and cyclic shift the corresponding indices of the permutation one to the right.

$$
p_{x_{2}}:=p_{x_{1}}, p_{x_{3}}:=p_{x_{2}}, p_{x_{4}}:=p_{x_{3}}, \ldots, p_{x_{k}}:=p_{x_{k-1}}, p_{x_{1}}:=p_{x_{k}}
$$

Applying this operation for a given k costs $\frac{1}{k}^{\star}$ dollars.
Your goal is to sort the given array using at most 2 dollars.

* For the purposes of the grader, the exact cost will be computed as $10^{-8}\left\lceil\frac{10^{8}}{k}\right\rceil$.

Input

The first line of input consists of a single integer $n\left(1 \leq n \leq 5 \cdot 10^{3}\right)$.
The second line of each test case contains n integers $p_{1}, p_{2} \ldots, p_{m}\left(1 \leq p_{i} \leq n\right)$ - the permutation to sort. It is guaranteed that the p_{i} will form a permutation.

Output

The first line of output contains a single integer m - the number of operations you used.
Then follow m lines of output.
The $i+1$-st line of output contains a binary string of length $n s_{i}$. If the j-th character of s_{i} is 1 , then j is an index in the i-th cyclic shift (and the reverse if the j-th character is 0).

Each of the m lines of output must all contain at least one ' 1 '.

Examples

	standard input	standard output		
3	3	3	4	
		011		
		110		
4		3	111	
1	2	4	011	

