Problem J. Knight's Tour Redux

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Consider a n by n chessboard with squares labelled $(1,1)$ through (n, n). On this chessboard lies a long knight. The long knight can move from square (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ if one of the two following conditions hold:

- $\left|x-x^{\prime}\right|=3$ and $\left|y-y^{\prime}\right|=1$
- $\left|x-x^{\prime}\right|=1$ and $\left|y-y^{\prime}\right|=3$

In essence, it is a normal chess knight, but longer.
A 'tour' of the chessboard is a sequence of squares $S_{1}, S_{2}, S_{3}, \ldots S_{n}$ such that for all $1 \leq i \leq n-1$ the move from S_{i} to S_{i+1} is a valid move for a long knight. Such a tour is considered 'complete' if and only if the tour visits each row and column of the chessboard exactly once.
For each positive integer n, determine whether it is possible for a complete tour of an n by n chessboard to exist and construct one such tour, if possible.

Input

The first line of input consists of a single integer $n\left(1 \leq n \leq 10^{5}\right)$ - the size of the chessboard.

Output

If it is not possible to create a 'complete' tour output the string "IMPOSSIBLE" in the only line.
Otherwise, output "POSSIBLE" in the first line.
The next n lines should contain the values x_{i}, y_{i} - the position of the i-th square in the complete tour.

Examples

standard input	standard output
1	POSSIBLE 1
2	IMPOSSIBLE

