Fading Wind Problem ID: fadingwind Time limit: 1 second

You're competing in an outdoor paper airplane flying contest, and you want to predict how far your paper airplane will fly. Your design has a fixed factor k, such that if the airplane's velocity is at least k, it will rise. If its velocity is less than k it will descend.

Here is how your paper airplane will fly:

- You start by throwing your paper airplane with a horizontal velocity of v at a height of h. There is an external wind blowing with a strength of s.
- While h > 0, repeat the following sequence:
 - Increase v by s. Then, decrease v by $\max(1, \lfloor \frac{v}{10} \rfloor)$. Note that $\lfloor \frac{v}{10} \rfloor$ is the value of $\frac{v}{10}$, rounded down to the nearest integer if it is not an integer.
 - If $v \ge k$, increase h by one.
 - If 0 < v < k, decrease h by one. If h is zero after the decrease, set v to zero.
 - If $v \leq 0$, set h to zero and v to zero.
 - Your airplane now travels horizontally by v units.
 - If s > 0, decrease it by 1.

Compute how far the paper airplane travels horizontally.

Input

The single line of input contains four integers h, k, v, and s $(1 \le h, k, v, s \le 10^3)$, where h is your starting height, k is your fixed factor, v is your starting velocity, and s is the strength of the wind.

Output

Output a single integer, which is the distance your airplane travels horizontally. It can be shown that this distance is always an integer.

Sample Input 1	Sample Output 1	
1 1 1 1 Sample Input 2	1	
	Sample Output 2	
2 2 2 2 2	9	
Sample Input 3	Sample Output 3	
Sample Input 3 1 2 3 4	Sample Output 3 68	
· · ·	· ·	