Fading Wind Problem ID: fadingwind
 Time limit: 1 second

You're competing in an outdoor paper airplane flying contest, and you want to predict how far your paper airplane will fly. Your design has a fixed factor k, such that if the airplane's velocity is at least k, it will rise. If its velocity is less than k it will descend.

Here is how your paper airplane will fly:

- You start by throwing your paper airplane with a horizontal velocity of v at a height of h. There is an external wind blowing with a strength of s.
- While $h>0$, repeat the following sequence:
- Increase v by s. Then, decrease v by $\max \left(1,\left\lfloor\frac{v}{10}\right\rfloor\right)$. Note that $\left\lfloor\frac{v}{10}\right\rfloor$ is the value of $\frac{v}{10}$, rounded down to the nearest integer if it is not an integer.
- If $v \geq k$, increase h by one.
- If $0<v<k$, decrease h by one. If h is zero after the decrease, set v to zero.
- If $v \leq 0$, set h to zero and v to zero.
- Your airplane now travels horizontally by v units.
- If $s>0$, decrease it by 1 .

Compute how far the paper airplane travels horizontally.

Input

The single line of input contains four integers h, k, v, and $s\left(1 \leq h, k, v, s \leq 10^{3}\right)$, where h is your starting height, k is your fixed factor, v is your starting velocity, and s is the strength of the wind.

Output

Output a single integer, which is the distance your airplane travels horizontally. It can be shown that this distance is always an integer.

Sample Input 1	Sample Output 1
$\begin{array}{lllll}1 & 1 & 1\end{array}$	1
Sample Input 2	Sample Output 2
2222	9
Sample Input 3	Sample Output 3
$\begin{array}{lllll}1 & 2 & 3\end{array}$	68
Sample Input 4	Sample Output 4
$\begin{array}{ll}314 & 159 \\ 265 & 358\end{array}$	581062

