

Problem B. Multi-Ladders

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 megabytes

In order to attract customers in a store, the owner decided to order a special neon sign to be placed in front of the store. This special neon sign is composed by several ladder-type components. Each laddertype component can be represented by a ladder graph L_n that is a planar, undirected graph with 2nvertices and 3n-2 edges. Each vertex represents a light bulb of the neon sign, and each edge represents a wire connecting two light bulbs. The ladder graph can be obtained as the Cartesian product of two path graphs, one of which has only one edge: $L_n = P_n \times P_2$, where P_n is a path of n vertices. Figure 1 shows L_6 . The main frame for holding k ladder-type components is k-regular polygon. Each edge of k-regular

Figure 1: L_6 .

polygon is combined with the top edge of L_n . Figure 2 shows the case with k = 3 and n = 4, and Figure 3 shows the case with k = 4 and n = 3. For ease of description, the neon sign is represented by a graph G = (V, E) comprised by the bulbs (vertices) and wires (edges). To make the neon lights more dazzling,

Figure 2: An example of k = 3 and n = 4.

the designer, Ray, came up with a way to specify the color of the bulbs (vertices) in G. Ray would like to assign colors to blubs such that the following condition hold. A coloring of G is said to be *proper* if we assign colors to the vertices of G so that if u and v are adjacent, then the colors assigned to u and v are different. The bulbs in G = (V, E) are distinguished, that is, the bulbs are named by labels $v_1, v_2, \ldots v_m$. Consequently, two color assignments of bulbs in G will be considered different if a proper coloring of the bulbs of G that uses at most λ colors is a function f, with domain V and codomain $\{1, 2, 3, \ldots, \lambda\}$, where $f(u) \neq f(v)$, for adjacent vertices $u, v \in V$. Proper colorings are then different in the same way that these functions are different. The maximum number of different ways to color G using λ colors is called the *critical number* of G.

Given (1) n (for L_n), (2) k (for k-regular polygon), and (3) the number of available colors λ , your task is to compute the critical number of G. Note that if the result is larger than or equal to $10^9 + 7$, you

Figure 3: An example of k = 4 and n = 3.

should output the value modulo $10^9 + 7$, that is, the remainder obtained using the actual value divided by $10^9 + 7$.

Input

The first line of the input file contains an integer L ($L \leq 20$) that indicates the number of test cases as follows. For each test case, the first line contains three integers (separated by whitespaces) representing n, k, and λ .

Constraints

- $1 \le n \le 1000000000$.
- $3 \le k \le 100000000$ for each test case.
- $0 \le \lambda \le 1000000000$.

Output

The output contains one line for each test case. Each line contains one non-negative integer representing the critical number of G. Note that if the result is larger than or equal to $10^9 + 7$, you should output the value modulo $10^9 + 7$, that is, the remainder obtained using the actual value divided by $10^9 + 7$.

Examples

standard input	standard output
1 2 3 3	162