
Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

Problem L. Programmable Virus
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 1024 megabytes

A great old ancient country is developing viruses for military purposes. Currently, they have found a way
to do computation in human cells. They designed a special enzyme. This enzyme has 4 binding points.
One is for reading RNAs as inputs, one is for generating RNAs as outputs. One is for both reading and
generating RNA back and forth to keep temporary computation states, and the final one is for reading an
RNA back and forth which indicates the program commands. They need some sample programs (RNAs)
for demonstration. They don’t have enough time to prepare the programs. So they ask for your help.

The enzyme deals with 3 nucleobases (G,U,A,C) as a unit when reading and writing RNAs. Not all
43 = 64 combinations of nucleobases are in use. They only choose 11 of them. They interpret them as
numeric data, or commands.

The 11 combinations are:

Nucleobases Value Command
GAC -1
CCC 0 STOP
ACG 1 NEXT
UGA 2 PREV
UGC 3 INC
UAC 4 DEC
GCG 5 OUT
UCC 6 IN
AGG 7 BEGIN
UGU 8 END
CAC 9 (DEBUG)

Once the input binding point of an enzyme is attached to an RNA chain, the computing process starts.
The enzyme moves the input binding point to the first data unit of the input RNA, moves the program
binding point to the first code point of the program RNA, initializes the output binding point to empty,
and generates an RNA which contains only one unit and then initializes the state binding point to it.

The enzyme executes the program commands one by one, until reaching a command called ‘STOP mark’.
The program commands are very simple, much different from modern programming languages. There are
only 9 kinds of commands:

0 STOP mark. Stop the execution.

1 Move the state binding point to the next one. If it is after the last one, put a 0 unit.

2 Move the state binding point to the previous one. If it is before the first one, put a 0 unit.

3 Replace the data unit under the state binding point with the numerically larger one. If it goes above
the largest one (9), then replace it with -1.

4 Replace the data unit under the state binding point with the numerically smaller one. If it goes
below the smallest one (-1), then replace it with 9.

5 Copy the data unit under the state binding point to the output point.

6 If there are no input data units, replace the data unit under the state binding point with -1.
Otherwise, replace the data unit under the state binding point with the data unit under the input
point. And move the input binding point to the next data unit.

Page 25 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

7 If the data unit under the state binding point is not 0, then move the program bind point to the
next command. Otherwise, move the program binding point forward to the command after the
‘matching’ 8 command.

8 If the data unit under the state binding point is 0, then move the program binding point to the
next command. Otherwise, move the program binding point backward to the command after the
‘matching’ 7 command.

The word ‘matching’ means to treat command 7 and command 8 as parentheses ‘(’ and ‘)’. They should
form a valid paired expression. And the matched commands correspond to the matched parentheses. The
paired command 7 and command 8 are often used as a loop.

The program binding point moves to the next command after executing the current one, except command
0,7, and 8.

The demonstration problem is simple: Read a series of non-negative digits as a decimal number and
determine if it is a multiple of k. Additionally, the program length and the running steps should not
exceed 106.

They prepared a simulation program (simu.c) for you. The first line of the input for the simulator is the
RNA program. The following lines are input RNAs for the RNA program. Use the symbol ’-’ in the
input to represent -1, and symbols ’0’ to ’9’ to represent 0 to 9. The simulator will execute the program
for each input data, and output the final result and the running step counts. The simulator additionally
accepts a special command, ‘9’. Every time it reaches command ‘9’, it will output the current result, the
state data, and the running step counts. The execution of command ‘9’ didn’t count into the steps.

Notes:

• You can download the source code of the simulator in the attachments of DOMjudge. You can find
them here.

• The simulator that used to judge the submissions won’t accept command ‘9’.

Page 26 of 34

https://domjudge.qoj.ac/team/problems

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

/∗ simu . c ∗/
/∗ gcc −o simu simu . c ∗/
#inc lude <s td i o . h>
#inc lude <s t r i n g . h>

char ∗ cmds [1 0] =
{ "CCC" , "ACG" , "UGA" , "UGC" , "UAC"
, "GCG" , "UCC" , "AGG" , "UGU" , "CAC"
} ;

char code [1000002] , memory [2000001] , input [1 0 0 0 0 0 1] ;
s t a t i c i n l i n e i n t get_cmd(char ∗ code){

f o r (i n t i =9; i >=0; −−i)
i f (strncmp (cmds [i] , code , 3)==0)

re turn i ;
r e turn −1;

}
i n t main (){

i f (! f g e t s (code , 1000002 , s td in)){
puts (" no code ") ;
r e turn 1 ;

}
i n t code_len = s t r l e n (code) ;
i f (code [code_len −1]!= ’\n ’){

puts (" code too long ") ;
r e turn 1 ;

}
code[−−code_len] = 0 ;

whi l e (f g e t s (input , 1000001 , s td in)){
char ∗ ip = code , ∗ input_p = input ;
char ∗mem = memory + 1000000;
char ∗mem_begin=mem, ∗mem_end=mem;
∗mem = 0 ;
i n t s tep = 0 , eo f = 0 ;
whi l e (1){

i f (s tep == 1000000){
puts (" s tep out o f bound ") ;
break ;

}
i f (code+code_len−ip < 3){

puts (" code out o f bound ") ;
break ;

}
i n t cmd = get_cmd(ip) ;
i f (cmd<0){

p r i n t f (" i n v a l i d code po int : %c%c%c\n" ,
ip [0] , ip [1] , ip [2]) ;

break ;
}
i f (cmd==0){

puts (" stop normally ") ;
break ;

}

Page 27 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

i f (cmd==1){
++mem;
i f (mem>mem_end)

∗++mem_end = 0 ;
}
e l s e i f (cmd==2){

−−mem;
i f (mem<mem_begin)

∗−−mem_begin = 0 ;
}
e l s e i f (cmd==3){

i f (∗mem==9)
∗mem = −1;

e l s e
++∗mem;

}
e l s e i f (cmd==4){

i f (∗mem==−1)
∗mem = 9 ;

e l s e
−−∗mem;

}
e l s e i f (cmd==5){

i f (∗mem==−1)
putchar (’ − ’) ;

e l s e
putchar (’ 0 ’ + ∗mem) ;

}
e l s e i f (cmd==6){

whi le (1){
i f (! ∗ input_p | | ∗ input_p==’\n ’){

∗mem = −1;
break ;

}
i f (∗ input_p==’−’){

∗mem = −1;
++input_p ;
break ;

}
i f (’0’<=∗input_p && ∗input_p <=’9’){

∗mem = ∗input_p++ − ’0 ’ ;
break ;

}
++input_p ;

}
}
e l s e i f (cmd==7){

i f (! ∗mem){
i n t sk ip = 1 ;
whi l e (sk ip){

ip += 3 ;
i f (code+code_len−ip < 3){

puts (" 7 can ’ t f i nd matched 8") ;

Page 28 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

goto END;
}
i f (strncmp (cmds [8] , ip , 3)==0)

−−sk ip ;
e l s e i f (strncmp (cmds [7] , ip , 3)==0)

++sk ip ;
}

}
}
e l s e i f (cmd==8){

i f (∗mem){
i n t sk ip = 1 ;
whi l e (sk ip){

ip −= 3 ;
i f (ip < code){

puts (" 8 can ’ t f i nd matched 7") ;
goto END;

}
i f (strncmp (cmds [7] , ip , 3)==0)

−−sk ip ;
e l s e i f (strncmp (cmds [8] , ip , 3)==0)

++sk ip ;
}

}
}
e l s e i f (cmd==9){

p r i n t f ("\ nstep : %d , s t a t e : " , s tep) ;
f o r (char ∗p=mem_begin ; p<=mem_end ; ++p)

i f (p==mem)
p r i n t f ("[% c] " , ∗p<0 ? ’− ’ : ’0 ’+∗p) ;

e l s e
putchar (∗p<0 ? ’− ’ : ’0 ’+∗p) ;

p r i n t f (" , code : ") ;
f o r (char ∗p=code ; p<code+code_len ; p+=3)

p r i n t f ("%c%c%c%c " ,
p==ip ? ’ [’ : p==ip+3 ? ’] ’ : ’ ’ ,
p [0] , p [1] , p [2]) ;

i f (code+code_len==ip+3)
putchar (’] ’) ;

puts (" ") ;
−−step ;

}
++step ;
ip += 3 ;

}
END: ;

}
re turn 0 ;

}

Input
The only line includes a positive integer: k.

Page 29 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

Constraints

• 1 ≤ k ≤ 6

• 1 ≤ n ≤ 109

Output
The output file should contain one line, which is the command RNA.

This program will read a series of non-negative digits as a decimal integer n. If n is a multiple of k, output
1, otherwise output 0.

Your program reads and writes numeric data directly. The enzyme will transform them from and to
nucleobases.

The RNA code length should not exceed 106. The number of running steps should not exceed 106.

Page 30 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

Examples
standard input standard output

1 UCCAGGUACUGUUGCGCGCCC

2 UGCAGGUACACGAGGUACUGUUGAAGGUACAC
GUGCUGAUGUUCCUGCUGUACGUGCAGGUACU
GAUGCACGAGGUACUGAUACACGAGGUACUGA
UGCACGAGGUACUGAUACACGAGGUACUGAUG
CACGAGGUACUGAUACACGAGGUACUGAUGCA
CGAGGUACUGAUACACGAGGUACUGAUGCACG
AGGUACUGAUACACGUGUUGUUGUUGUUGUUG
UUGUUGUUGUUGUUGAGCGCCC

3 UGCAGGACGACGUCCAGGUACACGUGCACGUG
CUGAUGAUGUACGACGACGUGCUGAUGCAGGU
ACACGAGGUACUGUUGAUGUACGAGGUGAUGA
UGAUGCUGAAGGUACACGAGGUACUGUUGAUG
UACGGCGCCCUGUUGAUGAAGGUACUGAUGCA
CGAGGUACUGAUGCACGAGGUACUGAUACUAC
ACGAGGUACUGAUGCACGAGGUACUGAUGCAC
GAGGUACUGAUACUACACGAGGUACUGAUGCA
CGAGGUACUGAUGCACGAGGUACUGAUACUAC
ACGUGUUGUUGUUGUUGUUGUUGUUGUUGUUG
AAGGUACUGAUGCACGUGUUGAAGGUACACGU
GCUGAAGGUACACGUGCUGAAGGUACACGUAC
UACUGAAGGUACACGUGCUGAUGUUGUUGUUG
UACGAGGUACUGAUGCACGUGUUGAUGAUGU

6 UGCAGGACGACGUCCAGGUACACGUGCACGUG
CUGAUGAUGUACGACGACGUGCUGAUGCAGGU
ACACGAGGUACUGUUGAUGUACGAGGUGAUGA
UGAUGAAGGAGGUACUGUGCGCCCUGUACGAC
GACGACGACGACGUGCAGGUACUGAUGCACGA
GGUACUGAUACACGAGGUACUGAUGCACGAGG
UACUGAUACACGAGGUACUGAUGCACGAGGUA
CUGAUACACGAGGUACUGAUGCACGAGGUACU
GAUACACGAGGUACUGAUGCACGAGGUACUGA
UACACGUGUUGUUGUUGUUGUUGUUGUUGUUG
UUGUUGAGCGCCCUGUUGAACGACGAGGUACU
GUACGAGGUACUGUUGAUGAUGAUGAAGGUAC
ACGACGACGUGCACGUGCUGAUGAUGAUGAUG
UACGACGACGAGGUACUGAUGAUGAUGCACGA
CGACGUGUUGAUGAUGAAGGUACUGAUGCACG
AGGUACUGAUGCACGAGGUACUGAUACUACAC
GAGGUACUGAUGCACGAGGUACUGAUGCACGA
GGUACUGAUACUACACGAGGUACUGAUGCACG
AGGUACUGAUGCACGAGGUACUGAUACUACAC
GUGUUGUUGUUGUUGUUGUUGUUGUUGUUGAA
GGUACUGAUGCACGUGUUGAAGGUACACGUGC
UGAAGGUACACGUGCUGAAGGUACACGUACUA
CUGAAGGUACACGUGCUGAUGUUGUUGUUGUA
CGAGGUACUGAUGCACGUGUUGAUGAUGU

Page 31 of 34

Uni

Cup

The 1st Universal Cup
Stage 6: Taiwan, Mar 4-5, 2023

Notes
There’s only one line in each sample output. We broke it into lines in samples because of the paper layout.
You should concatenate them into one line.

The following is the running example of the first sample program.

Program Memory Input Output Comment
UCC AGG UAC UGU UGC GCG CCC 3
UCC AGG UAC UGU UGC GCG CCC 3 IN
UCC AGG UAC UGU UGC GCG CCC 3 BEGIN: 3 != 0
UCC AGG UAC UGU UGC GCG CCC 2 DEC
UCC AGG UAC UGU UGC GCG CCC 2 END: 2 != 0
UCC AGG UAC UGU UGC GCG CCC 1 DEC
UCC AGG UAC UGU UGC GCG CCC 1 END: 1 != 0
UCC AGG UAC UGU UGC GCG CCC 0 DEC
UCC AGG UAC UGU UGC GCG CCC 0 END: 0 == 0
UCC AGG UAC UGU UGC GCG CCC 1 INC
UCC AGG UAC UGU UGC GCG CCC 1 1 OUT
UCC AGG UAC UGU UGC GCG CCC 1 1 STOP

Page 32 of 34

